1. Let (M, d) be a metric space. Show the following inequality:

$$|d(x, y) - d(z, y)| \leq d(x, z), \quad \forall x, y, z \in M.$$

2. Let A be an open set in \mathbb{R}, and define the set $B := \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \in A\} \subseteq \mathbb{R}^2$. Show that B is open in \mathbb{R}^2.

3. Let (M, d) be a metric space. Given a nonempty set $A \subseteq M$, let $B := \{x \in M \mid d(x, y) < 1 \text{ for some } y \in A\}$. Show that B is open. (Hint: write B as the union of open sets.)

4. Consider \mathbb{R}^2 and the metric induced by the 1-norm: $d(x, y) = |x_1 - y_1| + |x_2 - y_2|, \forall x, y \in \mathbb{R}^2$. Let $A = \{x = (x_1, x_2) \in \mathbb{R}^2 \mid x_1 \geq 1 \text{ and } x_2 \leq 1\}$. Find the interior of A (using the given metric), and prove your answer.

5. Let (M, d) be a metric space and A, B be two subsets of M. Show the following:

 (1) if $A \subseteq B$, then $\text{int}A \subseteq \text{int}B$;
 (2) $\text{int}(A \cap B) = (\text{int}A) \cap (\text{int}B)$.

The following extra problems are for Math 600 students only:

6. Given a normed space $(V, \| \cdot \|)$, let A be a nonempty open set in V, and B be a nonempty set in V. Define $A + B := \{a + b \in V \mid a \in A, b \in B\}$. Show that $A + B$ is open.

7. Let M be a set endowed with two metrics d_1 and d_2, namely, both (M, d_1) and (M, d_2) are metric spaces. Suppose that there exist two positive real numbers α and β such that

$$\beta d_1(x, y) \leq d_2(x, y) \leq \alpha d_1(x, y), \quad \forall x, y \in M.$$

Show that a set $A \subseteq M$ is open with respect to d_1 if and only if A is open with respect to d_2.

Note: For any Euclidean space \mathbb{R}^n, consider the usual metric induced by the Euclidean norm $\| \cdot \|_2$ on \mathbb{R}^n, unless otherwise stated.