Math 600 Fall 2015 Homework #7

Due Dec. 1, Tue. in class

Note: For the Euclidean space \(\mathbb{R}^n \), consider the usual metric induced by the Euclidean norm \(\| \cdot \|_2 \) on \(\mathbb{R}^n \), unless otherwise stated.

1. Let \(f_n : [1, 2] \to \mathbb{R} \) be \(f_n(x) = \frac{x}{(x+1)^n} \).
 (1) Use the Weierstrass M-test to show that \(\sum_{n=1}^{\infty} f_n(x) \) is uniformly convergent on \(A = [1, 2] \);
 (2) Determine if \(f_1(\sum_{n=1}^{\infty} f_n(x))dx = \sum_{n=1}^{\infty} f_1 f_n(x)dx \).

2. Let \(A = [-a, a] \subset \mathbb{R} \) with \(a > 0 \), and let
 \[f_n(x) = \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!}, \quad x \in \mathbb{R}. \]
 (1) Use the Weierstrass M-test to show uniform convergence of the series \(\sum_{n=1}^{\infty} f_n \) on \(A \);
 (2) Let \(f_* \) be the limit function of the series on \(A \), i.e., \(f_* (x) = \sum_{n=1}^{\infty} f_n(x) \). Is \(f_* \) differentiable on \((-a, a) \)? If so, is \(f'_*(x) = \sum_{n=1}^{\infty} f'_n(x) \) on \((-a, a) \)? Prove your answers.

3. Let \(f_n : \mathbb{R} \to \mathbb{R} \) be
 \[f_n(x) = \frac{(-1)^{n+1}x}{n}. \]
 Let \(A \) be a bounded set in \(\mathbb{R} \). Show that the series \(\sum_{n=1}^{\infty} f_n(x) \) converges uniformly on \(A \).
 (Hint: use the Cauchy criterion.)
 * Note that the Weierstrass M-test fails for this series. This example shows that the Weierstrass M-test is a sufficient condition for uniform convergence but not a necessary one.

4. Use the Cauchy criterion to show that the series \(\sum_{n=1}^{\infty} x^n \) does no converge uniformly on the open interval \((-1, 1) \). (Hint: let \(s_n \) be the \(n \)th partial sum, and for any \(m > n \), look at \(|s_m(1) - s_n(1)| \) and approximate 1 by a suitable \(x \in (-1, 1) \).)

5. Let \(f_n : \mathbb{R} \to \mathbb{R} \) be \(f_n(x) = \frac{x}{n^2 + x^2} \).
 (1) Use the Weierstrass M-test to show that the series \(s_* := \sum_{n=1}^{\infty} f_n \) converges uniformly on any bounded set \(A \subset \mathbb{R} \). Furthermore, show that \(s_* \) is continuous at any point in \(\mathbb{R} \).
 (2) Show that the series \(\sum_{n=1}^{\infty} f_n \) does not converge uniformly on \(\mathbb{R} \) via the Cauchy criterion.

6. Let the constant \(K \) satisfy \(0 < K < 1 \). Consider the linear function \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) defined by
 \[f(x) = \frac{K}{\sqrt{2}} (x_1 + x_2, \ x_2 - x_1), \quad \forall x = (x_1, x_2) \in \mathbb{R}^2. \]
 In the following, you may use the results of Problem 4.
 (1) Show that when the 2-norm (i.e., \(\| \cdot \|_2 \)) is used, \(f \) is a contraction.
 (2) Show that when the 1-norm (i.e., \(\| \cdot \|_1 \)) is used, \(f \) is not a contraction if \(\frac{1}{\sqrt{2}} < K < 1 \).
 (3) Let \(x^0 = (x^0_1, x^0_2) \in \mathbb{R}^2 \) be arbitrary. Define the sequence \((x^k) \) as \(x^k = f(x^{k-1}) \), \(k \in \mathbb{N} \). Explain why the sequence \((x^k) \) is convergent when the 2-norm is used. (Note: recall that \((\mathbb{R}^2, \| \cdot \|_2) \) is complete.)
Show that the sequence defined in (3) is convergent when the 1-norm is used. (Hint: use the equivalence of norms on a Euclidean space shown in Homework #5.)

⋆ This example shows that the contractive property is a sufficient condition for convergence but not a necessary one.

Miscellaneous practice problems: Do not submit

1. Let \(f_n : \mathbb{R} \to \mathbb{R} \) be such that the sequence \((f_n)\) converges uniformly to \(f_* \) on the set \(A \). Suppose that each \(f_n \) is bounded on \(A \), i.e., for each \(f_n \), there exists \(M_n > 0 \) (dependent on \(f_n \)) such that \(|f_n(x)| \leq M_n, \forall x \in A \). Show that \(f_* \) is bounded on \(A \).

2. Find the largest possible constant \(r \in (0, 1) \) such that the function \(f : [0, r] \to [0, r] \) defined by \(f(x) = x^2 \) is a contraction.

3. Let \((V, \| \cdot \|)\) be a complete normed vector space and its induced metric \(d(x, y) = \|x - y\| \) for \(x, y \in V \). Let \(f : V \to V \) be a linear mapping/function, i.e., \(f(x + y) = f(x) + f(y), \forall x, y \in V \) and \(f(\alpha x) = \alpha f(x) \) for all \(x \in V \) and \(\alpha \in \mathbb{R} \). You may assume the following facts without proof: \(f(0) = 0 \) and \(f(x - y) = f(x) - f(y), \forall x, y \in V \).

 (1) Show that \(f \) is a contraction if and only if there exists a constant \(C \) with \(0 < C < 1 \) such that \(\|f(x)\| \leq C\|x\| \) for all \(x \in V \).

 (2) Suppose that \(f \) is a contraction. Let \(x_0 \in V \) be arbitrary, and define the sequence \((x_n)\) recursively by \(x_n = f(x_{n-1}), \ n \in \mathbb{N} \). Show that \((x_n)\) converges to the zero vector in \(V \).