1. (20 pts) Given the matrix \(A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \)

 a) (10 pts) Compute the eigenvalues of \(A \).

 b) (10 pts) Compute the eigenvectors of \(A \).

2. (20 pts) Given the matrix \(A = \begin{pmatrix} 1 & 2 \\ 2 & -2 \\ -2 & 2 \end{pmatrix} \) and the vector \(b = \begin{pmatrix} -3 \\ 8 \\ 3 \end{pmatrix} \) find the best solution to the equation \(Ax = b \) in the least squares sense.

3. (20 pts) Starting with the set \(\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \) use the Gram-Schmidt algorithm to produce an orthonormal set of vectors which spans the same subspace.

4. (20 pts) Prove that if \(Q \) is orthogonal and \(A \) is symmetric then \(Q^{-1}AQ \) is symmetric.

5. (20 pts) State whether each of the following is true in all cases, some cases or no cases: (ALWAYS/SOMETIMES/NEVER) Assume all matrices are real.

 a) If \(C = A + B \) then \(\det(C) = \det(A) + \det(B) \).

 b) \(\det(A^T A) \geq 0 \).

 c) A square matrix with a non-pivot column is onto.

 d) An invertible matrix is diagonalizable.

 e) If \(Q \) is orthogonal and \(Q^T AQ \) is diagonal then \(A \) is symmetric.

 f) \(\{x^2+1, x^2+x, x^2+x+1\} \) is a basis of \(\mathbb{P}_2 \). (TRUE/FALSE)

 g) If \(\begin{vmatrix} a & b & 0 \\ c & d & 1 \\ 0 & 5 & 0 \end{vmatrix} = 3 \) then \(\begin{vmatrix} a & b & 0 \\ c & d & 1 \\ 0 & 7 & 0 \end{vmatrix} = 5 \)

 h) The rank of a square matrix is the number of non-zero columns.

 i) Given: A is not diagonalizable. The eigenvalues of matrix A are distinct.

 j) Given: the matrix A is orthogonal. A is symmetric.