1) (25 pts) If you have 100m of fencing and want to fence in a rectangular area on three sides (the fourth side is enclosed by a river) what is the largest area you can enclose?

If the width (the length of the side in the direction of the river) is \(w \) and the depth is \(d \) then the limitation is \(w + 2d = 100 \).

Solve this for \(w \) to get \(w = 100 - 2d \)

The area enclosed is \(A = wd \)

Plug in to get \(A = d(100 - 2d) = -2d^2 + 100d \)

The roots are \(d = \{0, 50\} \) (or, put in other words, \(A = -2d(d-50) \))

To find the vertex (the minimum) complete the square:

\[
A = -2d^2 + 100d = -2(d^2 - 50) = -2(d-25)^2 + 225
\]

So the largest area you can enclose is 225 m\(^2\), gotten when \(d = 25 \) and \(w = 50 \).

2) (30 pts) Graph \(y = \frac{2x^2 - 6x + 4}{x^2 - 3x} \). Include and label:
 i) zeros (x-intercepts)
 ii) y-intercept
 iii) vertical asymptotes
 iv) horizontal asymptotes (if any)
3) (25 pts) Solve for x if $2^{(3x-5)} = 16$.
First we note that $16 = 2^4$, so $2^{(3x-5)} = 2^4$.
And taking logarithms (base 2) we get $3x - 5 = 4$
so $x = 3$.

4) (20 pts) Match each function with its graph:
1) $y = e^x$ (graph d)
2) $y = 5^x$ (graph b - note that $5 > e$ so for $x > 0$ this is greater than fcn (1))
3) $y = 3e^x$ (graph a - this fcn should cross the y-axis at $y = 3$)
4) $y = x^3 + 1$ (graph c - for $x < 0$ this fcn goes towards negative infinity)
5) $y = \ln(x) + 1$ (graph e - \ln has a vertical asymptote at $x = 0$)