Generalized Input-to-State ℓ_2-Gains of Discrete-Time Switched Linear Control Systems*

Jianghai Hu† Jinglai Shen‡ and Vamsi Putta

April 20, 2015

Abstract

A generalized notion of input-to-state ℓ_2-gain is proposed for discrete-time switched linear control systems (SLCSs). Dependent on a discount factor of subsystem matrices, this generalized ℓ_2-gain provides new insight into input-to-state behaviors of the SLCSs under parameter variations. After establishing analytical properties of the generalized ℓ_2-gain, the paper focuses on the generating function approach to the study of the generalized ℓ_2-gain. Important properties of generating functions are derived, and it is shown that their radii of convergence characterize the generalized ℓ_2-gain. Furthermore, iterative algorithms are developed for computing the generating functions with proven uniform or exponential convergence. Numerical results show that these algorithms yield efficient estimates of both the generalized and classical ℓ_2-gains.

1 Introduction

A switched linear control system (SLCS) consists of a finite number of linear control subsystems along with a switching rule that determines the switchings among subsystems. Such systems have found numerous applications in various engineering problems. Belonging to the general framework of hybrid control systems, the SLCSs exhibit rich dynamics in spite of simple structure in their subsystems dynamics. In particular, they demonstrate inherently nonsmooth and hybrid dynamical behaviors, and require novel analytical and numerical techniques for their study [4].

The concept of L_2-gain (or ℓ_2-gain) plays an important role in robust control and stability analysis of control systems. Informally speaking, the L_2-gain is the maximum output energy excited using a given input/perturbation energy and it measures the disturbance attenuation of the system. This concept has been extensively studied for classical linear control systems and smooth nonlinear control systems [13, 28], and its study has been extended to the SLCSs and other hybrid systems recently [6, 7]. For instance, the L_2-gains are addressed under the assumption of slow switchings in [5], and an LMI-based method is proposed in [29] whereas the common storage function approach is studied in [8, 9, 10]. Furthermore, the design of switching signal to achieve a certain L_2-gain and related stability analysis is presented in [33]. For the discrete-time SLCSs, the ℓ_2-gains are characterized under dwell time constraints in [30] and their bounds are developed in [2, 16]; convergence and computation of classical or finite-horizon ℓ_2-gains are also studied in [14, 24] respectively. Despite these advances, computation of the L_2-gain (or ℓ_2-gain) of the SLCSs remains a difficult

*Partial preliminary results of this research were reported in the conference papers [18, 19].
†J. Hu and V. Putta are with School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA (jianghai, vputta@purdue.edu). This work was supported by the NSF Grant No. 1329875.
‡J. Shen is with Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD 21250, USA (shen@umbc.edu). This research was funded by the NSF grant DMS-1042916.
problem, due to switching induced combinatorial complexity. Attempts have been made toward finding nonconservative bounds of the L_2-gains at the cost of solving certain existence problems [8].

The goal of this paper is to study the input-to-state ℓ_2-gains (or simply ℓ_2-gains) of the discrete-time SLCSs subject to system parameter variations. Specifically, two interconnected issues are studied: (i) Analytic issue: how does the ℓ_2-gain vary with respect to system parameters? (ii) Numerical issue: how can the ℓ_2-gain be effectively computed with proven convergence under different system parameters? To address these issues, we consider a particular, yet nontrivial, case of parameter variations: the subsystem dynamics matrices are scaled simultaneously by a common scaling factor λ (cf. Remark 2.1). This consideration is motivated by the facts that the finiteness of the classical ℓ_2-gain of the SLCS is equivalent to the strong stability of the associated autonomous switched linear system (SLS) under a mild reachability assumption (cf. Theorem 2.1), and that the robustness of the strong stability of the SLS is measured by a critical value of the common scaling factor λ of subsystem dynamics matrices. Hence it is natural to ask, as the stability measure λ of the autonomous SLS varies, how the ℓ_2-gain of the SLCS changes with respect to λ (continuously? (strictly) monotonically? etc.) and how it is computed. In this setting, the classical ℓ_2-gain of the SLCS with parameter variations becomes a function of the scaling or discount factor λ, called the generalized input-to-state ℓ_2-gain. This generalized notion not only includes the classical counterpart as a special case but also provides insight into the input-to-state behaviors of parameter perturbed SLCSs. It is worth pointing out that many results of this paper also shed light on more general system parameter variations (cf. Theorem 2.1 and Proposition 2.2).

New analytic and numerical results are developed for the following aspects of the generalized ℓ_2-gain, which constitute the main contributions of the paper:

(1) Fundamental analytic properties of the generalized ℓ_2-gain are established. In particular, necessary and sufficient conditions are derived for the finiteness of the generalized or classical ℓ_2-gains under a suitable reachability assumption. Furthermore, it is shown that the finite generalized or classical ℓ_2-gain is (locally) continuous in system parameters.

(2) A novel generating function approach is developed for characterization and effective approximation of the generalized ℓ_2-gains, driven by the recent development for stability analysis of autonomous switched systems via this approach [11, 23]. Roughly speaking, a generating function is a power series in a discount factor with coefficients dependent on state trajectories; its radii of convergence characterize the maximum exponential growth rates of the system trajectories under different switching rules. This approach also yields effective computation of stability quantities. Towards the study of the generalized ℓ_2-gain, we introduce the controlled generating functions and show that their radii of convergence characterize the generalized ℓ_2-gain. Various analytic properties of the controlled generating functions and related quantities, e.g., the quadratic bounds and the domain of convergence, are derived and used to develop Bellman equation based iterative procedures for approximation of the generating functions with proven uniform or exponential convergence.

(3) Based on the analytic results of the controlled generating functions, finite-horizon generating function based algorithms are proposed for computing the generalized ℓ_2-gain. Numerical examples show that, by utilizing certain relaxation techniques, the proposed algorithms yield effective and less conservative estimates of the generalized or classical ℓ_2-gains compared to the existing methods.

The paper is organized as follows. Section 2 introduces the generalized ℓ_2-gain and establishes its analytic properties. Section 3 proposes controlled generating functions, derives their properties, and shows that their radius of convergence completely characterizes the generalized ℓ_2-gain. The case of one dimensional SLCSs is studied in Section 4 as an illustration. In Section 5, the representation and approximation of generating functions are discussed. This yields effective algorithms with numerical results presented in Section 6. Lastly, conclusions are drawn in Section 7.
\section{Generalized ℓ_2-Gain of Switched Linear Control Systems}

A discrete-time switched linear control system (SLCS) on \mathbb{R}^n is defined by

\[x(t+1) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t), \quad t \in \mathbb{Z}_+ := \{0, 1, \ldots\}. \tag{1} \]

Its subsystems $\{(A_i, B_i) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}\}_{i \in \mathcal{M}}$ are indexed by the finite set $\mathcal{M} := \{1, \ldots, M\}$. Its state solution starting from $x(0) = z$, denoted by $x(t; \sigma, u, z)$ for $t \in \mathbb{Z}_+$, is dependent on the control input $u := \{u(0), u(1), \ldots\}$ as well as the switching sequence $\sigma := \{\sigma(0), \sigma(1), \ldots\}$ with $\sigma(t) \in \mathcal{M}$. For a fixed σ, the SLCS reduces to a linear time-varying system and thus $x(t; \sigma, u, z)$ is jointly linear in u and z. The reachable set of the SLCS, $\mathcal{R} := \{x(t; \sigma, u, 0) \mid \forall \sigma, \forall u, \forall t \in \mathbb{Z}_+, x(0) = 0\}$, is the set of all states reachable within a finite time starting from $x(0) = 0$ under arbitrary σ and u. Unlike classical linear systems, the reachable set of a discrete-time SLCS may not be a subspace [26]. For example, a one-step finite impulse response (FIR) system satisfying $A_iB_j = 0$ for all $i, j \in \mathcal{M}$ has the reachable set $\bigcup_{i \in \mathcal{M}} \mathcal{R}(B_i)$ that is in general not a subspace. Here $\mathcal{R}(\cdot)$ denotes the range of a matrix. The following assumption is imposed throughout the paper (unless otherwise indicated).

\begin{assumption}
The reachable set \mathcal{R} of the SLCS (1) spans \mathbb{R}^n, i.e., $\text{span}(\mathcal{R}) = \mathbb{R}^n$.
\end{assumption}

Note that Assumption 2.1 implies that at least one $B_i \neq 0$.

The autonomous switched linear system (SLS) associated with the SLCS (1) is:

\[x(t+1) = A_{\sigma(t)}x(t), \quad \forall t \in \mathbb{Z}_+, \tag{2} \]

whose solution is denoted $x(t; \sigma, z) := x(t; \sigma, u, z)|_{u=0}$.

\subsection{Generalized Input-to-State ℓ_2-Gain}

Let $\ell_2(\mathbb{R}^m)$ denote all \mathbb{R}^m-valued sequences u with finite ℓ_2-norm $\|u\|_2 := \sqrt{\sum_{t=0}^{\infty} \|u(t)\|^2}$. The classical input-to-state ℓ_2-gain of the discrete-time SLCS (1) is defined by

\[\kappa := \sup_{\sigma} \sup_{0 \neq u \in \ell_2(\mathbb{R}^m)} \frac{\sqrt{\sum_{t=0}^{\infty} \|x(t+1; \sigma, u, 0)\|^2}}{\sqrt{\sum_{t=0}^{\infty} \|u(t)\|^2}}. \tag{3} \]

Given $\lambda \in \mathbb{R}_+ := [0, \infty)$, let $\|u\|_{\lambda, 2} := \sqrt{\sum_{t=0}^{\infty} \lambda^t \|u(t)\|^2}$ be the λ-discounted ℓ_2-norm of u, and $\mathcal{U}_\lambda := \{u \mid \|u\|_{\lambda, 2} < \infty\}$. The generalized input-to-state ℓ_2-gain with a discount factor $\lambda \in \mathbb{R}_+$ is

\[\kappa(\lambda) := \sup_{\sigma} \sup_{0 \neq u \in \mathcal{U}_\lambda} \frac{\sqrt{\sum_{t=0}^{\infty} \lambda^t \|x(t+1; \sigma, u, 0)\|^2}}{\sqrt{\sum_{t=0}^{\infty} \lambda^t \|u(t)\|^2}}, \tag{4} \]

which is the largest amplification factor of the λ-discounted ℓ_2-norm of state over that of input under any switching sequence. The goal of this paper is to characterize $\kappa(\lambda)$ for different $\lambda \in \mathbb{R}_+$.

\begin{remark}
The classical input-to-state ℓ_2-gain is a special case of the generalized ℓ_2-gain $\kappa(\lambda)$ with $\lambda = 1$. Conversely, $\kappa(\lambda)$ is the classical ℓ_2-gain of the following SLCS:

\[\tilde{x}(t+1) = \tilde{A}_{\sigma(t)}\tilde{x}(t) + \tilde{B}_{\sigma(t)}\tilde{u}(t), \tag{5} \]

where $\tilde{A}_i := \sqrt{\lambda}A_i$ and $\tilde{B}_i := B_i$. In fact, under the scaled control input $\tilde{u}(t) := \sqrt{\lambda} \cdot u(t)$, the solution of the new SLCS satisfies $\tilde{x}(t+1; \sigma, \tilde{u}, 0) = \sqrt{\lambda} \cdot x(t+1; \sigma, u, 0)$ for $t \in \mathbb{Z}_+$ and all σ. By the homogeneity of $\tilde{x}(t; \sigma, \tilde{u}, 0)$ in \tilde{u}, $\kappa(\lambda) = \sup_{\sigma} \sup_{\tilde{\|\tilde{u}\|}_2=1} \sqrt{\sum_{t=0}^{\infty} \|\tilde{x}(t+1; \sigma, \tilde{u}, 0)\|^2}$. \hfill \Box$
\end{remark}
For each $k \in \mathbb{Z}_+$, the (generalized) k-horizon ℓ_2-gains, $\kappa_k(\lambda)$, of the SLCS (1) is defined as

$$\kappa_k(\lambda) := \sup_{\sigma} \sup_{0 \neq u \in \mathcal{U}_k} \sqrt{\frac{\sum_{t=0}^{k} \lambda^t \|x(t+1; \sigma, u, 0)\|^2}{\sum_{t=0}^{k} \lambda^t \|u(t)\|^2}},$$

(6)

where $\mathcal{U}_k \subset \mathcal{U}_\lambda$ is the set of inputs u with duration at most k, namely, $u(t) \equiv 0$ for all $t > k$. Note that $\cup_{k \in \mathbb{Z}_+} \mathcal{U}_k$ is a dense subset of \mathcal{U}_λ. In what follows, we define the constant γ_0 as

$$\gamma_0 := \max_{i \in \mathcal{M}} \|B_i\|.$$

(7)

Here, $\|B_i\|$ denotes the largest singular value of B_i. By Assumption 2.1, we must have $\gamma_0 > 0$.

Proposition 2.1. $\kappa(\lambda)$ and its finite horizon counterparts $\kappa_k(\lambda)$ have the following properties:

1. $\kappa_k(\lambda) \uparrow \kappa(\lambda)$ as $k \to \infty$ for each $\lambda \in \mathbb{R}_+$;

2. $\kappa_k(\lambda)$ is continuous in $\lambda \in \mathbb{R}_+$ for each $k \in \mathbb{Z}_+$, and $\kappa(\lambda)$ is lower semi-continuous in $\lambda \in \mathbb{R}_+$;

3. At $\lambda = 0$, $\kappa(0) = \gamma_0$, where γ_0 is defined in (7).

Proof. (1) That $\kappa_k(\lambda)$ is non-decreasing in k follows as the supremum in (6) is taken over a space \mathcal{U}_k that is non-decreasing in k. A similar argument shows that $\kappa_k(\lambda) \leq \kappa(\lambda)$ for any k. As a result, $\lim_{k \to \infty} \kappa_k(\lambda) \leq \kappa(\lambda)$. To show the other direction, assume first $\kappa(\lambda)$ is finite. Then for any small $\varepsilon > 0$, a control $u \in \mathcal{U}_\lambda$ and a switching sequence σ exist such that $\sum_{t=0}^{\infty} \lambda^t \|u(t)\|^2 = 1$ and $[\kappa(\lambda)]^2 - \varepsilon \leq \sum_{t=0}^{\infty} \lambda^t \|x(t+1; \sigma, u, 0)\|^2 \leq [\kappa(\lambda)]^2$. By choosing ℓ large enough, we have $\sum_{t=0}^{\ell} \lambda^t \|x(t+1; \sigma, u, 0)\|^2 \geq [\kappa(\lambda)]^2 - 2\varepsilon$ while $\sum_{t=0}^{\ell} \lambda^t \|u(t)\|^2 \leq 1$; thus $[\kappa_\ell(\lambda)]^2 \geq [\kappa(\lambda)]^2 - 2\varepsilon$. As $\kappa_k(\lambda)$ is non-decreasing in k, $[\kappa(\lambda)]^2 - 2\varepsilon \leq [\kappa_k(\lambda)]^2 \leq [\kappa(\lambda)]^2$, $\forall k \geq \ell$. As $\varepsilon > 0$ is arbitrary, we have $\lim_{k \to \infty} \kappa_k(\lambda) = \kappa(\lambda)$. The case when $\kappa(\lambda) = \infty$ can be similarly proved.

(2) For any $\lambda \geq 0$, let $\tilde{x}(t; \sigma, \tilde{u}, 0)$ be the solution of the scaled SLCS (5) with subsystem matrices $\{(\sqrt{\lambda}A_i, B_i)\}_{i \in \mathcal{M}}$ and $\tilde{u}(t) = \sqrt{\lambda} \cdot u(t)$. By Remark 2.1, $\kappa_k(\lambda) = \sup_{\sigma} \sup_{0 \neq \tilde{u} \in \mathcal{U}_k, \|\tilde{u}\|_2 = 1} \sqrt{\sum_{t=0}^{k} \|\tilde{x}(t+1; \sigma, \tilde{u}, 0)\|^2}$ for each $k \in \mathbb{Z}_+$. Denote $\sigma_{0:k} := (\sigma(0), \ldots, \sigma(k)) \in \mathcal{M}^{k+1}$, $v := (\tilde{u}(0), \ldots, \tilde{u}(k)) \in \mathbb{R}^{(k+1)m}$, and define the set $\mathcal{B}_v := \{v \mid \sum_{t=0}^{k} \|\tilde{u}(t)\|^2 = 1\}$. Then $\kappa_k(\lambda) = \max_{\sigma_{0:k}} \sup_{v \in \mathcal{B}_v} \|f_{\sigma_{0:k}}(\lambda, v)\|$ for some function $f_{\sigma_{0:k}}$ continuous in (λ, v) for each $\sigma_{0:k}$. Let $\lambda_0 \in \mathbb{R}_+$ be arbitrary. Each $f_{\sigma_{0:k}}$ is continuous, hence uniformly continuous, on the compact set $[0, \lambda_0] \times \mathcal{B}_v$. As a result, $g_{\sigma_{0:k}}(\lambda) := \sup_{v \in \mathcal{B}_v} \|f_{\sigma_{0:k}}(\lambda, v)\|$ is uniformly continuous, thus continuous, in λ on $[0, \lambda_0]$. As λ_0 is arbitrary, $g_{\sigma_{0:k}}(\lambda)$ is continuous in λ on \mathbb{R}_+. Since there are finitely many $\sigma_{0:k}$, $\kappa_k(\lambda) = \max_{\sigma_{0:k}} g_{\sigma_{0:k}}(\lambda)$ is continuous in λ on \mathbb{R}_+. Finally, being the pointwise supremum of all continuous functions $\kappa_k(\lambda)$, $\kappa(\lambda)$ must be lower semi-continuous in λ.

(3) At $\lambda = 0$, the definition (4) becomes $\kappa(0) = \sup_{\sigma(0) \in \mathcal{M}, u(0) \neq 0} \|B_\sigma(0)u(0)\|/\|u(0)\| = \gamma_0$.

2.2 Finiteness of Generalized ℓ_2-Gain

It is well known that an LTI control system (A, B) has finite input-to-state ℓ_2-gain if and only if the autonomous system defined by A is stable. We show that this result can be extended to the generalized ℓ_2-gain. Recall that the autonomous SLS (2) with subsystem dynamics matrices $\{A_i\}_{i \in \mathcal{M}}$ is called exponentially stable under arbitrary switching (or absolutely exponentially stable [15]) with the parameters (C, r) if there exist constants $C > 0$ and $r \in (0, 1)$ such that its solution satisfies $\|x(t; \sigma, z)\| \leq Cr^t |z|$, $\forall t$, for all $z \in \mathbb{R}^n$ and switching sequences σ, or equivalently,

$$\|\Phi_{t,k}^\sigma\| \leq Cr^{t-k}, \quad \forall \sigma, t, k \in \mathbb{Z}_+ \text{ with } t \geq k.$$

Here, $\Phi_{t,k}^\sigma$ is the state transition matrix defined by $\Phi_{t,k}^\sigma := A_{\sigma(t-1)} \cdots A_{\sigma(k)}$ for $t > k$ and $\Phi_{t,t}^\sigma := I$.

\[4\]
Theorem 2.1. If the autonomous SLS (2) is exponentially stable under arbitrary switching with the parameters \((C, r)\) for some \(C > 0\) and \(r \in [0, 1)\), then the SLCS (1) has finite (classical) \(\ell_2\)-gain:

\[
\kappa \leq \frac{C\gamma_0}{1 - r},
\]

where \(\gamma_0\) is defined in (7). Under Assumption 2.1, the converse also holds: if \(\kappa < \infty\), then the SLS \(\{A_i\}_{i \in \mathcal{M}}\) is exponentially stable under arbitrary switching.

Proof. The solution of the SLCS (1) under arbitrary \(\sigma\) and \(u \in \ell_2(\mathbb{R}^m)\) is given by

\[
x(t+1; \sigma, u, 0) = \sum_{k=0}^{t} \Phi_{t+1,k+1}^{\sigma} B_{\sigma(k)} u(k), \quad t \in \mathbb{Z}_+.
\]

The stability assumption implies \(\|\Phi_{t+1,k+1}^{\sigma}\| \leq C r^{t-k}\). Consider a sequence \(w = (w_1, w_2, \ldots) \in \ell_2(\mathbb{R}^n)\) with \(w_t = 0\) for all \(t \geq N + 2\) for some \(N \in \mathbb{Z}_+\). Then,

\[
\begin{align*}
\left| \sum_{t=0}^{\infty} (w_{t+1})^T x(t+1; \sigma, u, 0) \right| & \leq \left| \sum_{t=0}^{\infty} (w_{t+1})^T \sum_{k=0}^{t} \Phi_{t+1,k+1}^{\sigma} B_{\sigma(k)} u(k) \right| \\
& \leq \sum_{t=0}^{\infty} \sum_{k=0}^{t} C r^{t-k} \gamma_0 \|u(k)\| \cdot \|w_{t+1}\| = \sum_{s=0}^{\infty} \sum_{k=0}^{s} C r^{s} \gamma_0 \|u(k)\| \cdot \|w_{s+k+1}\| \\
& \leq C \gamma_0 \sum_{s=0}^{\infty} r^s \|u\|_2 \cdot \|w\|_2 = \frac{C \gamma_0}{1-r} \|u\|_2 \cdot \|w\|_2.
\end{align*}
\]

By setting \(w_t := x(t; \sigma, u, 0)\) for \(t = 1, \ldots, N + 1\), we have

\[
\left(\sum_{t=0}^{N} \|x(t+1; \sigma, u, 0)\|^2 \right)^{1/2} \leq \frac{C \gamma_0}{1-r} \|u\|_2.
\]

Letting \(N \to \infty\), we have \(\|x(\cdot; \sigma, u, 0)\|_2 \leq C \gamma_0 / (1-r) \cdot \|u\|_2\) for all \(\sigma\) and \(u \in \ell_2(\mathbb{R}^m)\), i.e., \(\kappa \leq C \gamma_0 / (1-r)\).

For the converse statement, assume that the SLS (2) is not exponentially stable under arbitrary switching. Then it follows from [11, Proposition 1 and Theorem 2] that there exists a proper subspace \(\mathcal{V}\) of \(\mathbb{R}^n\) such that for each \(z \notin \mathcal{V}\), \(\sum_{t=0}^{\infty} \|x(t; \sigma_z, 0, z)\|^2 = \infty\) for some switching sequence \(\sigma_z\). By Assumption 2.1, the reachable set \(\mathcal{R}\) is not contained in \(\mathcal{V}\). Therefore, we can find one \(z \in \mathcal{R} \setminus \mathcal{V}\), i.e., \(z = x(\tau; \sigma', u', 0)\) for some \(\sigma'\) and \(u'\) and a finite time \(\tau\). A state solution to the SLCS can be constructed so that it first adopts \(\sigma'\) and \(u'\) to reach \(z\) at time \(\tau\), and then adopts \(\sigma_z\) and \(u = 0\) from time \(\tau\) thereon. Thus the state solution has infinite \(\ell_2\) energy, even though the input \(u\) has a finite duration. Thus \(\kappa = \infty\), a contradiction.

By Remark 2.1, the following result follows immediately.

Corollary 2.1. Suppose \(\lambda \in \mathbb{R}_+\) is such that the scaled SLS \(\{\sqrt{\lambda} A_i\}_{i \in \mathcal{M}}\) is exponentially stable under arbitrary switching with the parameters \((C, r)\) for some \(C > 0\) and \(r \in [0, 1)\). Then the generalized \(\ell_2\)-gain \(\kappa(\lambda)\) of the SLCS (1) satisfies \(\kappa(\lambda) \leq \frac{C \gamma_0}{\sqrt{\lambda}}\). Conversely, under Assumption 2.1, if \(\kappa(\lambda) < \infty\), then the SLS \(\{\sqrt{\lambda} A_i\}_{i \in \mathcal{M}}\) is exponentially stable under arbitrary switching.

It is known [12] that the SLS \(\{A_i\}_{i \in \mathcal{M}}\) is exponentially stable under arbitrary switching if and only if the joint spectral radius (JSR) \(\rho^*\) of the matrix set \(\{A_i\}_{i \in \mathcal{M}}\) satisfies \(\rho^* < 1\), where
\[\rho^* := \lim_{k \to \infty} \max \left\{ \| A_{i_1} \cdots A_{i_k} \|^{1/k} \mid i_1, \ldots, i_k \in M \right\}. \]

Since the scaled SLS \(\{ \sqrt{\lambda} A_i \}_{i \in M} \) has the JSR given by \(\sqrt{\lambda \cdot \rho^*} \), it is exponentially stable under arbitrary switching if and only if

\[\lambda < \lambda^* := (\rho^*)^{-2}. \]

(9)

Hence, under Assumption 2.1, Corollary 2.1 implies that \(\kappa(\lambda) < \infty \) if and only if \(\lambda \in [0, \lambda^*) \).

It is well known [27, Corollary 2] that determining the exponential stability of the SLS \(\{ \sqrt{\lambda} A_i \}_{i \in M} \) under arbitrary switching is an NP-hard problem. By Corollary 2.1, this implies that deciding if \(\kappa(\lambda) < \infty \) (an easier task than computing the value of \(\kappa(\lambda) \)) is also an NP-hard problem.

2.3 Continuity of Generalized \(\ell_2 \)-Gain

In this section, we show that \(\kappa(\lambda) \) is continuous on \([0, \lambda^*)\) where \(\lambda^* \) is defined in (9). Denote by \(S \) the ordered matrix tuple \((A_i, B_i)\) \(\forall i \in M\). The set of all such \(S \) with \(A_i \in \mathbb{R}^{n \times n} \) and \(B_i \in \mathbb{R}^{n \times m} \) is a vector space denoted by \(S \) and endowed with a norm, e.g., \(\| \cdot \|_S \). Since the projection operator \(S \mapsto A_i \) (resp. \(S \mapsto B_i \)) is continuous hence bounded, there exists a positive constant \(\theta \) such that

\[\| A_i \| \leq \theta \cdot \| S \|_S, \quad \| B_i \| \leq \theta \cdot \| S \|_S, \quad \forall S \in S, \ i \in M. \]

For any given \(S \in S \) and switching sequence \(\sigma \), define \(L_{S, \sigma}(u) := x(\cdot; \sigma, u, 0) \) as in (8). Assume that the SLS \(\{ A_i \}_{i \in M} \) is exponentially stable under arbitrary switching. Then Theorem 2.1 implies that the linear operator \(L_{S, \sigma} : \ell_2(\mathbb{R}^m) \to \ell_2(\mathbb{R}^n) \) is uniformly bounded in \(\sigma \), i.e.,

\[\| L(S) \| := \sup_{\sigma} \sup_{\| u \|_2 = 1} \| L_{S, \sigma}(u) \|_2 < \infty, \]

where \(\| \cdot \|_2 \) is the \(\ell_2 \)-norm on the Hilbert space \(\ell_2(\mathbb{R}^m) \) or \(\ell_2(\mathbb{R}^n) \). The following result\(^1\) shows that \(\| L(S) \| \) is locally Lipschitz continuous in the system parameter \(S \).

Proposition 2.2. Let \(S = ((A_i, B_i))_{i \in M} \in S \) be given such that the SLS \(\{ A_i \}_{i \in M} \) is exponentially stable under arbitrary switching. Then there exist \(\varepsilon > 0 \) and \(\mu > 0 \) (dependent on \(S \) only) such that for any \(S', S'' \) within the neighborhood \(B_S(\varepsilon) := \{ \tilde{S} \in S \mid \| \tilde{S} - S \|_S \leq \varepsilon \} \) of \(S \), we have

\[\| L(S') \| - \| L(S'') \| \leq \mu \cdot \| S' - S'' \|_S. \]

Proof. By [12, Proposition 1.4], the stability assumption of the SLS \(\{ A_i \}_{i \in M} \) implies that there exist a vector norm \(\| \cdot \|_e \) on \(\mathbb{R}^n \) and a constant \(0 \leq r_1 < 1 \) such that \(\| A_i \|_e := \sup_{z \neq 0} \| A_i z \|_e / \| z \|_e \leq r_1 \) for all \(i \in M \). By the continuity of the induced matrix norm \(\| \cdot \|_e \), we can find \(\varepsilon > 0 \) and some \(r \in [r_1, 1) \) so that \(\| A_i' \|_e \leq r \) for all \(A_i' \in B_S(\varepsilon) \). This implies, for any \(i_1, \ldots, i_k \in M \), \(\| A_{i_1}' A_{i_2}' \cdots A_{i_k}' \|_e \leq r^k \), hence \(\| A_{i_1}' A_{i_2}' \cdots A_{i_k}' \| \leq C r^k \) for some suitable constant \(C > 0 \). Define the constant \(\xi := \max_{i \in M} \sup_{S' \in \mathcal{B}_S(\varepsilon)} \| B_i' \|_e \), which is finite as \(B_S(\varepsilon) \) is a bounded set.

Let \(S', S'' \in B_S(\varepsilon) \) and \(\sigma \) be arbitrary. The linear operator \(T : \ell_2(\mathbb{R}^m) \to \ell_2(\mathbb{R}^n) \) defined by \(T(u) := L_{S', \sigma}(u) - L_{S'', \sigma}(u) \) is bounded (hence continuous) with the operator norm \(\| T \| := \sup_{\| u \|_2 = 1} \| T(u) \|_2 \). We will show below that \(\| T \| \leq \mu \cdot \| S' - S'' \|_S \) for a positive constant \(\mu \) independent of \(S', S'' \) and \(\sigma \). By (8), the \((t + 1)\)-th entry of the sequence \(T(u) \) is given by

\[T_{t+1}(u) := x'(t + 1; \sigma, u, 0) - x''(t + 1; \sigma, u, 0) = \sum_{k=1}^{t+1} \left[A_{i_1}' \cdots A_{i_{k-1}}' B_{i_k}' - A_{i_1}'' \cdots A_{i_{k-1}}'' B_{i_k}'' \right] u(t + 1 - k), \]

\(^1\)We thank Dr. Thomas I. Seidman of University of Maryland Baltimore County for helpful discussions on this result.
where the indices i_1, \ldots, i_k are determined from the given σ, and $A'_{i_1} \cdots A'_{i_{k-1}} = A''_{i_1} \cdots A''_{i_{k-1}} = I$ if $k = 1$. Then, for each $k = 1, \ldots, t + 1$,

\[
\begin{align*}
&\left\| A'_{i_1} \cdots A'_{i_{k-1}} B'_{i_k} - A''_{i_1} \cdots A''_{i_{k-1}} B''_{i_k} \right\| \\
\leq &\left\| A'_{i_1} \cdots A'_{i_{k-1}} B'_{i_k} - A'_{i_1} \cdots A'_{i_{k-1}} B''_{i_k} \right\| \\
&\quad + \sum_{s=0}^{k-2} \left\| A'_{i_1} \cdots A'_{i_{s}} A''_{i_{s+1}} \cdots A''_{i_{k-1}} B''_{i_k} - A'_{i_1} \cdots A'_{i_{s+1}} A''_{i_{s+2}} \cdots A''_{i_{k-1}} B''_{i_k} \right\| \\
\leq &\ C_r^{-1} \| B'_{i_k} - B''_{i_k} \| + (k-1) C^{2} \cdot \max_{s=0, \ldots, k-2} \| A''_{i_{s+1}} - A''_{i_{s+1}} \| \\
\leq &\ C_{k^{-2}} \left[r + (k-1) C \right] \theta \cdot \| S' - S'' \| \leq \nu (r + \delta)^k \cdot \| S' - S'' \| S.
\end{align*}
\]

for any sufficiently small $\delta > 0$ with $r + \delta < 1$ and some large $\nu > 0$ (dependent on r and δ only). The last step follows because $r^{k-2} [r + (k-1) C] \theta$ is a higher order infinitesimal than $(r + \delta)^k$ as $k \to \infty$. As a result, by using the same argument as in the proof of Theorem 2.1 (on the operator T rather than $L_{S, \sigma}$ with (C, r) replaced by $(\nu, r + \delta)$), we obtain that \(|T| \leq \mu \cdot \| S' - S'' \|_S \), where $\mu := \nu/(1 - r - \delta)$. It is clear that μ is independent of σ and $S', S'' \in B_S(\varepsilon)$. Consequently,

\[
\| L(S') \| = \sup_{\| u \|_2 = 1, \sigma} \| L_{S', \sigma}(u) \|_2 \leq \sup_{\| u \|_2 = 1, \sigma} \left[\| L_{S''', \sigma}(u) \|_2 + \| T(u) \|_2 \right] \leq \| L(S'') \| + \mu \| S' - S'' \|_S.
\]

The roles of S' and S'' can be reversed to yield a similar inequality, leading to the desired result. \(\square\)

Recall that the scaled SLS $\{ \sqrt{\lambda} A_i \}_{i \in M}$ is exponentially stable under arbitrary switching if and only if $\lambda \in [0, \lambda^*)$ with λ^* given in (9).

Theorem 2.2. The generalized ℓ_2-gain $\kappa(\lambda)$ of the SLCS (1) is continuous in λ on $[0, \lambda^*)$. Furthermore, $\kappa(\lambda)$ is Lipschitz continuous in $\sqrt{\lambda}$ on any compact subset of $[0, \lambda^*)$.

Proof. For any $\lambda \geq 0$, let $\tilde{x}(t; \sigma, \tilde{u}, 0)$ be the solution of the scaled SLCS (5) with subsystem matrices $\{ (\sqrt{\lambda} A_i, B_i) \}_{i \in M}$ and $\tilde{u}(t) = \sqrt{\lambda} \cdot u(t)$. It follows from the discussions in Remark 2.1 that

\[
\kappa(\lambda) = \sup_{\| \tilde{u} \|_2 = 1, \sigma} \| \tilde{x}(\cdot; \sigma, \tilde{u}, 0) \|_2 = \| L(S_{\lambda}) \|,
\]

where $S_{\lambda} := \{ (\sqrt{\lambda} A_i, B_i) \}_{i \in M} \in \mathcal{S}$. At any $\lambda_0 \in [0, \lambda^*)$, since the autonomous SLS $\{ \sqrt{\lambda_0} A_i \}_{i \in M}$ corresponding to S_{λ_0} is exponentially stable under arbitrary switching, Proposition 2.2 implies that $\kappa(\lambda)$ is locally Lipschitz continuous in S_{λ}, hence in $\sqrt{\lambda}$ as well. This implies via an open covering argument that $\kappa(\lambda)$ is (uniformly) Lipschitz in $\sqrt{\lambda}$ on any compact subset of $[0, \lambda^*)$. The continuity of $\kappa(\lambda)$ in λ on $[0, \lambda^*)$ then follows readily. \(\square\)

We note that the continuity results in Proposition 2.2 and Theorem 2.2 hold without the reachability assumption.

Corollary 2.2. For any given $\lambda_0 \in (0, \lambda^*)$, $\kappa_k(\cdot)$ converges uniformly to $\kappa(\cdot)$ on $[0, \lambda_0]$ as $k \to \infty$.

Proof. It is known from Proposition 2.1 and Theorem 2.2 that $\kappa(\cdot)$ and $\kappa_k(\cdot)$ for all k are continuous on the compact interval $[0, \lambda_0]$. Since $\kappa_k(\cdot)$ converges pointwise and monotonically to $\kappa(\cdot)$, it follows from Dini’s Theorem [21, Theorem 7.13] that the convergence is uniform on $[0, \lambda_0]$. \(\square\)
3 Generating Functions of Switched Linear Control Systems

The notion of generating functions is originally introduced in [11] to study the stability of autonomous SLSs. For the autonomous SLS (2), its (strong) generating function is defined by

\[G_\lambda(z) := \sup_{\sigma} \sum_{t=0}^{\infty} \lambda^t \|x(t; \sigma, z)\|^2 \in \mathbb{R}_+ \cup \{\infty\}, \; \forall z \in \mathbb{R}^n, \; \lambda \in \mathbb{R}_+, \tag{10} \]

which has the radius of convergence \(\lambda^* := \sup\{\lambda \in \mathbb{R}_+ | G_\lambda(z) < \infty, \; \forall z \in \mathbb{R}^n\} \). Note that this is the same notation defined in (9) via the JSR \(\rho^* \), since the two are identical [11]. Thus the SLS (2) is exponentially stable under arbitrary switching if and only if \(\lambda^* > 1 \). In this section, we will extend these notions to the SLCSs for studying the generalized \(\ell_2 \)-gains.

3.1 Controlled Generating Function of SLCS

The (controlled) generating function \(G_{\lambda,\gamma}(\cdot) \in \mathbb{R}_+ \cup \{+\infty\} \) of the SLCS (1) is defined as

\[G_{\lambda,\gamma}(z) := \sup_{u \in \mathcal{U}_t, \sigma} \left[\sum_{t=0}^{\infty} \lambda^t \|x(t; \sigma, u, z)\|^2 - \gamma^2 \lambda^\infty \sum_{t=0}^{\infty} \lambda^t \|u(t)\|^2 \right] \]
\[= \|z\|^2 + \lambda \sup_{u \in \mathcal{U}_t, \sigma} \sum_{t=0}^{\infty} \lambda^t \left[\|x(t+1; \sigma, u, z)\|^2 - \gamma^2 \|u(t)\|^2 \right], \; \forall z \in \mathbb{R}^n, \tag{11} \]

for \(\lambda, \gamma \in \mathbb{R}_+ \). The signs of the two summations in (11) are chosen to coax \(u \) and \(\sigma \) into exciting the largest state energy. The restriction \(u \in \mathcal{U}_t \) ensures the convergence of the second summation in (11). Clearly, \(G_{\lambda,\gamma}(z) \geq \|z\|^2 \geq 0 \). Moreover, at \(\lambda = 0 \), \(G_{0,\gamma}(z) = \|z\|^2 \).

For \(k \in \mathbb{Z}_+ \) and \(\lambda, \gamma \in \mathbb{R}_+ \), the \(k \)-horizon generating function \(G_{\lambda,\gamma,k}(\cdot) \) is defined as

\[G_{\lambda,\gamma,k}(z) := \sup_{\sigma, u} \left[\sum_{t=0}^{k-1} \lambda^t \|x(t; \sigma, u, z)\|^2 - \gamma^2 \lambda^k \sum_{t=0}^{k-1} \lambda^t \|u(t)\|^2 \right] \]
\[= \|z\|^2 + \lambda \sup_{\sigma, u} \sum_{t=0}^{k-1} \lambda^t \left[\|x(t+1; \sigma, u, z)\|^2 - \gamma^2 \|u(t)\|^2 \right], \tag{12} \]

for \(z \in \mathbb{R}^n \), with the understanding that \(G_{\lambda,\gamma,0}(\cdot) = \| \cdot \|^2 \).

The following proposition, whose proof is presented in Appendix A, shows that \(G_{\lambda,\gamma}(z) \) can be approximated by \(G_{\lambda,\gamma,k}(z) \) arbitrarily closely when \(k \) is large.

Proposition 3.1. For each fixed \(\lambda, \gamma \in \mathbb{R}_+ \) and \(z \in \mathbb{R}^n \), \(G_{\lambda,\gamma,k}(z) \uparrow G_{\lambda,\gamma}(z) \) as \(k \to \infty \).

Basic properties of \(G_{\lambda,\gamma} \) are stated in the next proposition whose proof is given in Appendix B. Many of these properties are proved first for \(G_{\lambda,\gamma,k} \) and then extended to \(G_{\lambda,\gamma} \) via Proposition 3.1.

Proposition 3.2. The controlled generating function \(G_{\lambda,\gamma}(\cdot) \) and its finite-horizon counterparts \(G_{\lambda,\gamma,k}(\cdot) \) for \(\lambda, \gamma \in \mathbb{R}_+ \) and \(k \in \mathbb{Z}_+ \) have the following properties.

1) (Homogeneity): \(G_{\lambda,\gamma}(\cdot) \) and \(G_{\lambda,\gamma,k}(\cdot) \) are both homogeneous of degree two, i.e., \(G_{\lambda,\gamma}(\alpha z) = \alpha^2 G_{\lambda,\gamma}(z) \) and \(G_{\lambda,\gamma,k}(\alpha z) = \alpha^2 G_{\lambda,\gamma,k}(z) \), \(\forall z \in \mathbb{R}^n, \forall \alpha \in (0, \infty) \). Thus, \(G_{\lambda,\gamma}(0) \in \{0, \infty\} \).

2) (Bellman Equation): For all \(z \in \mathbb{R}^n \) and \(k \in \mathbb{Z}_+ \),

\[G_{\lambda,\gamma,k+1}(z) = \|z\|^2 + \lambda \sup_{i \in \mathcal{M}, v \in \mathbb{R}^m} \left[-\gamma^2 \|v\|^2 + G_{\lambda,\gamma,k}(A_i z + B_i v) \right], \tag{15} \]
\[G_{\lambda,\gamma}(z) = \|z\|^2 + \lambda \sup_{i \in \mathcal{M}, v \in \mathbb{R}^m} \left[-\gamma^2 \|v\|^2 + G_{\lambda,\gamma}(A_i z + B_i v) \right]. \tag{16} \]
3) (Monotonicity): For any \(z \in \mathbb{R}^n \), \(G_{\lambda, \gamma}(z) \) and \(G_{\lambda, \gamma,k}(z) \) are non-increasing in \(\gamma \in \mathbb{R}_+ \) (for a fixed \(\lambda \)) and non-decreasing in \(\lambda \in \mathbb{R}_+ \) (for a fixed \(\gamma \)).

4) (Sub-additivity): \(\sqrt{G_{\lambda, \gamma}(z)} \) and \(\sqrt{G_{\lambda, \gamma,k}(z)} \) for each \(k \in \mathbb{Z}_+ \) are sub-additive in \(z \):

\[
\sqrt{G_{\lambda, \gamma,k}(z_1 + z_2)} \leq \sqrt{G_{\lambda, \gamma,k}(z_1)} + \sqrt{G_{\lambda, \gamma,k}(z_2)},
\]

\[
\sqrt{G_{\lambda, \gamma}(z_1 + z_2)} \leq \sqrt{G_{\lambda, \gamma}(z_1)} + \sqrt{G_{\lambda, \gamma}(z_2)}, \quad \forall z_1, z_2 \in \mathbb{R}^n
\]

5) (Convexity): \(\sqrt{G_{\lambda, \gamma}(z)} \) and \(\sqrt{G_{\lambda, \gamma,k}(z)} \) for each \(k \in \mathbb{Z}_+ \) are convex functions of \(z \) on \(\mathbb{R}^n \).

6) (Invariant Subspace): \(G_{\lambda, \gamma} := \{ z \in \mathbb{R}^n \mid G_{\lambda, \gamma}(z) < \infty \} \) is a subspace of \(\mathbb{R}^n \) invariant under subsystem dynamics, i.e., \(A_i G_{\lambda, \gamma} + B_i \mathbb{R}^m \subseteq G_{\lambda, \gamma}, \forall i \).

7) (Lower Bound): \(G_{\lambda, \gamma}(z) \geq G_{\lambda}(z), \forall z \in \mathbb{R}^n \), where \(G_{\lambda}(z) \) defined in \((10) \).

3.2 Quadratic Bound

Denote by \(S^{n-1} := \{ z \in \mathbb{R}^n \mid \| z \| = 1 \} \) the unit sphere. For each \(\lambda, \gamma \in \mathbb{R}_+ \), define

\[
g_{\lambda, \gamma} := \sup_{z \in S^{n-1}} G_{\lambda, \gamma}(z) \in \mathbb{R}_+ \cup \{ +\infty \}. \tag{17}
\]

By homogeneity, \(G_{\lambda, \gamma}(z) \) admits the following tight bound:

\[
G_{\lambda, \gamma}(z) \leq g_{\lambda, \gamma}\| z \|^2, \quad \forall z \in \mathbb{R}^n. \tag{18}
\]

We next study \(g_{\lambda, \gamma} \) as a function of \((\lambda, \gamma) \in \mathbb{R}_+^2 := \mathbb{R}_+ \times \mathbb{R}_+ \). Obviously \(g_{\lambda, \gamma} \) is non-decreasing in \(\lambda \) and non-increasing in \(\gamma \) by the monotonicity of \(G_{\lambda, \gamma}(z) \); and \(g_{0, \gamma} = 1, \forall \gamma \in \mathbb{R}_+ \).

Proposition 3.3. Both \(g_{\lambda, \gamma} \) and \(G_{\lambda, \gamma}(0) \) are lower semi-continuous functions of \((\lambda, \gamma) \in \mathbb{R}_+^2 \).

Proof. Let \(\phi_{\sigma,u,z,k}(\lambda, \gamma) := [\sum_{t=0}^{k} \lambda^t \| x(t; \sigma, u, z) \|^2 - \gamma^2 \lambda \sum_{t=0}^{k-1} \lambda^t \| u(t) \|^2] \). Then

\[
g_{\lambda, \gamma} = \sup_{z \in S^{n-1}} \sup_{k \in \mathbb{Z}_+} \sup_{\sigma \in U \lambda_k} \sup_{u \in U_{\lambda_k-1}} \phi_{\sigma,u,z,k}(\lambda, \gamma), \quad G_{\lambda, \gamma}(0) = \sup_{k \in \mathbb{Z}_+} \sup_{\sigma \in U \lambda_k} \sup_{u \in U_{\lambda_k-1}} \phi_{\sigma,u,0,k}(\lambda, \gamma), \tag{19}
\]

expressing each as the supremum of a family of continuous functions of \(\lambda \) and \(\gamma \).

For the next property, we first introduce the following lemma.

Lemma 3.1. [1, pp. 119, Ex. 3.32] Let \(f, h : \mathbb{R}_+ \to \mathbb{R}_+ \cup \{ +\infty \} \) be two (extended valued) convex non-decreasing functions. Then their product \(f \cdot h : \mathbb{R}_+ \to \mathbb{R}_+ \cup \{ +\infty \} \) is also a convex function.

Proposition 3.4. The function \(g_{\lambda, \gamma} \) is a convex function of \(\lambda \in \mathbb{R}_+ \) for each fixed \(\gamma \in \mathbb{R}_+ \), and a convex function of \(\gamma^2 \in \mathbb{R}_+ \) for each fixed \(\lambda \in \mathbb{R}_+ \).

Proof. To show the convexity of \(g_{\lambda, \gamma} \) in \(\lambda \) when \(\gamma \) is fixed, we first show by induction that for each \(k \in \mathbb{Z}_+ \), \(G_{\lambda, \gamma,k}(z) \) is a convex function of \(\lambda \) for fixed \(\gamma \in \mathbb{R}_+ \) and \(z \in \mathbb{R}^n \). This is trivially true at \(k = 0 \) since \(G_{\lambda, \gamma,0}(z) = \| z \|^2 \) is constant in \(\lambda \). Suppose it holds for \(k = 0, 1, \ldots, k_0 \). From the Bellman equation \((16) \), \(G_{\lambda, \gamma,k+1}(z) = \| z \|^2 + \lambda \cdot h(\lambda) \), where the function \(h : \mathbb{R}_+ \to \mathbb{R}_+ \cup \{ +\infty \} \) is given by \(h(\lambda) := \sup_{z \in \mathbb{R}_+} \left[-\gamma^2 \| v \|^2 + G_{\lambda, \gamma,k}(A_i z + B_i v) \right] \). It follows from the induction hypothesis and monotone property of \(G_{\lambda, \gamma,k}(z) \) that the term inside the brackets, and hence \(h(\lambda) \) itself, is convex and non-decreasing in \(\lambda \). Applying Lemma 3.1 to the two functions \(f(\lambda) := \lambda \) and \(h(\lambda) \), we deduce that \(G_{\lambda, \gamma,k+1}(z) \) is convex in \(\lambda \). By induction, \(G_{\lambda, \gamma,k}(z) \) are convex in \(\lambda \) for all \(k \in \mathbb{Z}_+ \). It follows from Proposition 3.1 that \(G_{\lambda, \gamma}(z) \) is convex in \(\lambda \). Finally, using the definition \((17) \), we conclude that \(g_{\lambda, \gamma} \) is convex in \(\lambda \). Moreover, by \((19) \), \(g_{\lambda, \gamma} \) is the supremum of a family of affine functions of \(\gamma^2 \). Hence the second statement holds.

\[\square \]
It should be noted that \(g_{\lambda, \gamma} \) is in general not convex in \((\lambda, \gamma)^2\), or convex in \(\gamma\). More properties of \(g_{\lambda, \gamma}\) will be presented in Section 3.3.

3.3 Domain of Convergence

This subsection is concerned with the set of \((\lambda, \gamma) \in \mathbb{R}^2_+\) at which \(G_{\lambda, \gamma}(z)\) is finite for all \(z\). This set plays a crucial role in characterizing the generalized \(\ell_2\)-gain \(\kappa(\lambda)\).

Definition 3.1. The domain of convergence (DOC) of the generating function \(G_{\lambda, \gamma}(z)\) is the set

\[
\Omega := \{(\lambda, \gamma) \in \mathbb{R}^2_+ \mid G_{\lambda, \gamma}(z) < \infty, \forall z \in \mathbb{R}^n\} \subset \mathbb{R}^2_+.
\]

The open domain of convergence (open DOC) is defined to be the interior of \(\Omega\), i.e., \(\Omega^o := \text{int}(\Omega)\).

Since \(G_{\lambda, \gamma}(z) = \|z\|^2 < \infty\) at \(\lambda = 0\), the DOC always contains the nonnegative \(\gamma\)-axis \(\Lambda_0 := \{(0, \gamma) \mid \gamma \in \mathbb{R}\}\). Denote by \(\Omega_+\) the nontrivial part of DOC with \(\Lambda_0\) removed:

\[
\Omega_+ := \Omega \backslash \Lambda_0 = \Omega \cap (\mathbb{R}_{++} \times \mathbb{R}_+), \quad \text{where} \quad \mathbb{R}_{++} := (0, \infty).
\]

In the following, the DOC may refer to either \(\Omega\) or \(\Omega_+\).

Some properties of the DOC are straightforward. For example, due to the monotonicity property of \(G_{\lambda, \gamma}(z)\) in \((\lambda, \gamma)\), if \((\lambda, \gamma)\) belongs to the DOC, so does any \((\lambda', \gamma')\) with \(\lambda' \leq \lambda\) and \(\gamma' \geq \gamma\). Further properties of the DOC can be derived by utilizing the following finiteness tests.

Proposition 3.5. For any \(\lambda, \gamma \in \mathbb{R}_+\), the following statements are equivalent:

1. \(G_{\lambda, \gamma}(z) < \infty, \forall z \in \mathbb{R}^n;\)
2. \(\sqrt{G_{\lambda, \gamma}(\cdot)}\) is a norm, and thus continuous, on \(\mathbb{R}^n;\)
3. \(g_{\lambda, \gamma} < \infty;\)
4. \(G_{\lambda, \gamma}(0) = 0.\)

Moreover, if further \(\lambda > 0\), then each of the above statements is equivalent to the following statement:

5. \(G_{\lambda, \gamma}(B_i v) \leq \gamma^2 \|v\|^2\) for all \(i \in \mathcal{M}\) and all \(v \in \mathbb{R}^m.\)

Proof. 1) \(\Rightarrow\) 2): If 1) holds, then \(\sqrt{G_{\lambda, \gamma}(\cdot)}\) is finite on \(\mathbb{R}^n\), positive homogeneous of degree one, and sub-additive by Proposition 3.2. Therefore, it defines a norm on \(\mathbb{R}^n.\)

2) \(\Rightarrow\) 3): If \(\sqrt{G_{\lambda, \gamma}(\cdot)}\) is a norm, it must be continuous, hence bounded on the compact set \(S^{n-1}.\)

3) \(\Rightarrow\) 4): If \(g_{\lambda, \gamma} < \infty\), then by (18), \(0 \leq G_{\lambda, \gamma}(0) \leq g_{\lambda, \gamma}\|0\|^2 = 0.\)

4) \(\Rightarrow\) 1): Suppose \(G_{\lambda, \gamma}(0) = 0.\) If \(\lambda = 0\), then \(G_{\lambda, \gamma}(z) = \|z\|^2 < \infty, \forall z.\) Assume \(\lambda > 0.\) Then (16) evaluated at \(z = 0\) yields \(G_{\lambda, \gamma}(B_i v) \leq \gamma^2 \|v\|^2\), \(\forall i \in \mathcal{M}, v \in \mathbb{R}^m.\) This shows that \(G_{\lambda, \gamma}(z) < \infty\) at all \(z\) reachable from \(x(0) = 0\) in one time step. Next let \(z\) be any state reachable from \(x(0) = 0\) in one step. Then (16) implies \(\sup_{i,v} \left[-\gamma^2 \|v\|^2 + G_{\lambda, \gamma}(A_i z + B_i v) \right] = [G_{\lambda, \gamma}(z) - \|z\|^2] / \lambda.\) Therefore, for any \(i \in \mathcal{M}\) and any \(v \in \mathbb{R}^m, G_{\lambda, \gamma}(A_i z + B_i v) \leq \lambda^{-1}(G_{\lambda, \gamma}(z) - \|z\|^2) + \gamma^2 \|v\|^2 < \infty.\) This shows that \(G_{\lambda, \gamma}(\cdot)\) is finite on the reachable set from \(x(0) = 0\) in two steps. By induction, we deduce that \(G_{\lambda, \gamma}(\cdot)\) is finite on the reachable set \(\mathcal{R}\) of the SLCS. Since \(\mathcal{R}\) spans \(\mathbb{R}^n\) by Assumption 2.1 and \(\sqrt{G_{\lambda, \gamma}(\cdot)}\) is sub-additive by Proposition 3.2, \(G_{\lambda, \gamma}(\cdot)\) is finite on \(\mathbb{R}^n.\)

4) \(\Leftrightarrow\) 5): Let \(\lambda > 0.\) The equivalence of 4) and 5) follows directly from (16) by setting \(z = 0.\)
Figure 1: A generic plot of the DOC of the generating function $G_{\lambda, \gamma}(\cdot)$.

1) The lower bound of Ω_+. Since $G_{\lambda, \gamma}(z) \geq \|z\|^2$, for $(\lambda, \gamma) \in \Omega_+$, by letting $z = B_i v$ we must have $\gamma^2 \|v\|^2 \geq \|B_i v\|^2$, $\forall i \in M$, $v \in \mathbb{R}^m$, i.e., $\gamma \geq \gamma_0$ with γ_0 defined in (7). Thus, the set Ω_+ is bounded from below by the horizontal line $\mathbb{R}^+ \times \{\gamma_0\}$.

2) The right asymptotic bound of Ω. Consider any $\lambda \in (0, \lambda^*)$, where λ^* is the radius of convergence of the autonomous generating function $G_{\lambda}(\cdot)$. Since the SLS $\{\sqrt{\lambda} A_i\}_{i \in M}$ is exponentially stable under arbitrary switching, $\kappa(\lambda)$ is finite by Theorem 2.1. Thus for all γ large enough, specifically $\gamma \geq \kappa(\lambda)$, we have $G_{\lambda, \gamma}(0) = 0$ by its definition in (12) and hence $(\lambda, \gamma) \in \Omega_+$. On the other hand, if $\lambda \geq \lambda^*$, $G_{\lambda}(z) = \infty$ for some z, so is $G_{\lambda, \gamma}(z)$ for any γ by property 7) of Proposition 3.2. In summary, the DOC is bounded from the right by the vertical line $\{\lambda^*\} \times \mathbb{R}^+$ and can be arbitrarily close to that line as $\lambda \to \lambda^*$.

3) The interior of Ω. The above argument also implies that Ω must have nonempty interior.

Proposition 3.6. The DOC Ω is a closed subset of \mathbb{R}^2_+.

Proof. By Proposition 3.5, the DOC $\Omega = \{(\lambda, \gamma) \in \mathbb{R}^2_+ \mid G_{\lambda, \gamma}(0) \leq 0\}$ is a sublevel set of the lower semi-continuous function $G_{\lambda, \gamma}(0)$ (cf. Proposition 3.3). Thus Ω is closed [20, pp. 51].

As a result, $g_{\lambda, \gamma}$ defined in (17) is finite not only in the interior Ω^0 but also on the boundary $\partial \Omega$ of the DOC. A generic plot of the DOC is shown in Fig. 1, with more to be given in Section 4. Note that in general Ω_+ may not be convex. When restricted on Ω, $g_{\lambda, \gamma}$ has the following additional properties (see Appendix C for the proof).

Proposition 3.7. The function $g_{\lambda, \gamma} : \Omega \to \mathbb{R}^+_+ \cup \{+\infty\}$ has the following properties.

1) It is finite everywhere on Ω, including on its boundary;

2) It is continuous on the interior Ω^0 of Ω;

3) If at least one $A_i \neq 0$, then for any fixed $\gamma \in \mathbb{R}^+_+$, $g_{\lambda, \gamma}$ is strictly increasing in λ on Ω.

Example 3.1 (One-Step FIR System). Suppose the assumption of Statement 3) of Proposition 3.7 does not hold, i.e., $A_i = 0$ for all $i \in M$. The resulting SLCS is a one-step FIR system as $A_i B_j = 0$, $\forall i, j \in M$. In this case, the SLCS has solutions $x(t; \sigma, u, z) = B_{\sigma(t-1)} u(t-1)$, $\forall t \in \mathbb{N}$. Therefore,

$$G_{\lambda, \gamma}(z) = \|z\|^2 + \sum_{t=0}^{\infty} \lambda^{t+1} \sup_{\sigma(t), u(t)} \left[-u^T(t)Q_{\sigma(t)} u(t) \right],$$

(20)
where \(Q_i := \gamma^2 I - B_i^T B_i, \, i \in \mathcal{M}\). If \(\gamma \geq \gamma_0\) with \(\gamma_0\) given in (7), then \(Q_{\sigma(t)} \geq 0, \forall t\); (20) thus implies \(G_{\lambda,\gamma}(z) = \|z\|^2, \forall z\). If \(\gamma < \gamma_0\), then at least one \(Q_i\) has a negative eigenvalue and \(G_{\lambda,\gamma}(z) = \infty, \forall z\), for all \(\lambda > 0\). In summary, the DOC is \(\Omega_+ = \mathbb{R}_+ \times [\gamma_0, \infty)\) and \(g_{\lambda,\gamma} \equiv 1\) on \(\Omega\). \(\diamondsuit\)

It is shown in Proposition 3.1 that \(G_{\lambda,\gamma,k}(\cdot) \uparrow G_{\lambda,\gamma}(\cdot)\) as \(k \to \infty\) pointwise on \(\mathbb{R}^n\). The following result shows that the convergence is uniform on the unit sphere if \((\lambda, \gamma) \in \Omega\).

Proposition 3.8. Suppose \((\lambda, \gamma) \in \Omega\). Then \(G_{\lambda,\gamma,k}(\cdot) \uparrow G_{\lambda,\gamma}(\cdot)\) uniformly on \(S^{n-1}\).

Proof. We have shown that \((G_{\lambda,\gamma,k})\) is a monotonically increasing sequence of continuous functions converging pointwise on \(S^{n-1}\) to \(G_{\lambda,\gamma}\) as \(k \to \infty\). For \((\lambda, \gamma) \in \Omega\), Proposition 3.5 implies that \(\sqrt{G_{\lambda,\gamma}(\cdot)}\), and hence \(G_{\lambda,\gamma}(\cdot)\), is continuous on \(S^{n-1}\). Therefore, by Dini’s Theorem [21, Theorem 7.13], \((G_{\lambda,\gamma,k})\) converges uniformly to \(G_{\lambda,\gamma}\) on \(S^{n-1}\). \(\square\)

Stronger convergence results will be derived in Theorem 5.1 and Corollary 5.1 for \((\lambda, \gamma) \in \Omega^\circ\).

3.4 Radius of Convergence

We introduce the notion of the radius of convergence of the generating functions and show that it completely characterizes the generalized \(\ell_2\)-gain of the SLCS. Recall that the radius of convergence of a power series \(\sum_{i=0}^{\infty} \lambda_i a_i\) is the supremum of all \(\lambda \geq 0\) for which the series converges. Viewing \(G_{\lambda,\gamma}(z)\) in (14) as a power series in \(\lambda\), a similar notion can be defined as follows.

Definition 3.2. The radius of convergence of the generating function \(G_{\lambda,\gamma}(\cdot)\) is defined as

\[
\lambda^*(\gamma) := \sup\{\lambda \in \mathbb{R}_+ | G_{\lambda,\gamma}(z) < \infty, \forall z \in \mathbb{R}^n\}, \forall \gamma \in \mathbb{R}_+.
\]

Alternatively, \(\lambda^*(\gamma) = \sup\{\lambda | g_{\lambda,\gamma} < \infty\} = \sup\{\lambda | (\lambda, \gamma) \in \Omega\}\), i.e., \((\lambda^*(\gamma), \gamma) \in \mathbb{R}_+^2\) is on the right boundary of \(\Omega\). Since \(\Omega\) is closed, \((\lambda^*(\gamma), \gamma) \in \Omega\) and \(g_{\lambda^*(\gamma),\gamma} < \infty\) for each \(\gamma\).

Proposition 3.9. The radius of convergence \(\lambda^*(\gamma)\) for \(\gamma \geq 0\) has the following properties.

1) \(\lambda^*(\gamma) \equiv 0\) for \(0 \leq \gamma < \gamma_0\) where \(\gamma_0\) is defined in (7);

2) \(\lambda^*(\gamma)\) is non-decreasing in \(\gamma\);

3) \(\lambda^*(\gamma)\) is upper semicontinuous in \(\gamma\).

Proof. Statement 1) is obvious as we have shown that \(\Omega_+\) is bounded from below by the horizontal line \(\mathbb{R}_+ \times \{\gamma_0\}\). Statement 2) follows as \(g_{\lambda,\gamma}\) is non-increasing in \(\gamma\). Statement 3) follows as the hypograph of the function \(\lambda^*(\gamma)\), namely \(\{(\lambda, \gamma) \in \mathbb{R}_+^2 | \lambda \leq \lambda^*(\gamma)\}\), is \(\Omega\), a closed set. \(\square\)

The graph of the function \(\lambda^*(\gamma)\) describes the right boundary of the DOC. This boundary can also be viewed from bottom up as the graph of the following function:

\[
\gamma^*(\lambda) := \inf\{\gamma \in \mathbb{R}_+ | g_{\lambda,\gamma} < \infty\}, \forall \lambda \in \mathbb{R}_+.
\] (21)

Or equivalently, \(\gamma^*(\lambda) := \inf\{\gamma \in \mathbb{R}_+ | (\lambda, \gamma) \in \Omega\}\).

Proposition 3.10. \(\gamma^*(\lambda)\) has the following properties.

1) \(\gamma^*(0) = 0\) and \(\gamma^*(\lambda) \geq \gamma_0\) for \(\lambda > 0\);

2) \(\gamma^*(\lambda)\) is non-decreasing in \(\lambda\);
\[3) \ \gamma^*(\lambda) \text{ is lower semicontinuous in } \lambda. \]

Proof. We deduce 1) by noting that \(\Omega \) contains the nonnegative \(\gamma \)-axis and that \(\Omega_+ \) is bounded from below by the horizontal line \(\mathbb{R}_{++} \times \{ \gamma_0 \} \). Statement 2) follows as \(g_{\lambda, \gamma} \) is nondecreasing in \(\lambda \). To prove 3), we note that the epigraph of \(\gamma^*(\lambda), \{(\lambda, \gamma) \mid \gamma \geq \gamma^*(\lambda) \} \), is the closed set \(\Omega \). \(\square \)

Example 3.2. For the one-step FIR system with all \(A_i = 0 \), it is shown in Example 3.1 that \(\Omega_+ = \mathbb{R}_{++} \times [\gamma_0, \infty) \). As a result, the radius of convergence \(\lambda^*(\gamma) \) and \(\gamma^*(\lambda) \) are given by

\[
\lambda^*(\gamma) = \begin{cases} 0 & \text{if } 0 \leq \gamma < \gamma_0 \\ \infty & \text{if } \gamma \geq \gamma_0, \end{cases} \quad \gamma^*(\lambda) = \begin{cases} 0 & \text{if } \lambda = 0 \\ \gamma_0 & \text{if } \lambda > 0. \end{cases}
\]

Note that \(\lambda^*(\cdot) \) is upper semicontinuous but not continuous and \(\gamma^*(\cdot) \) is lower semicontinuous but not continuous. \(\diamond \)

As \(\gamma^*(\lambda) \) and \(\lambda^*(\gamma) \) are different characterizations of the same boundary of the DOC, it is not surprising that they are the (generalized) inverse of each other, as is shown below.

Proposition 3.11. The two functions \(\gamma^*(\lambda) \) for \(\lambda > 0 \) and \(\lambda^*(\gamma) \) for \(\gamma > 0 \) satisfy

\[
\gamma^*(\lambda) = \inf \{ \gamma > 0 : \lambda^*(\gamma) \geq \lambda \}, \quad \forall \lambda > 0, \\
\lambda^*(\gamma) = \sup \{ \lambda > 0 : \gamma^*(\lambda) \leq \gamma \}, \quad \forall \gamma > 0.
\]

Proof. For any \(\lambda > 0 \), the condition \(\lambda^*(\gamma) \geq \lambda \) is equivalent to \((\lambda, \gamma) \in \Omega_+ \), which in turn is equivalent to \(\gamma \geq \gamma^*(\lambda) \). This proves the first identity. Similarly, for any \(\gamma > 0 \), assuming \(\lambda > 0 \), the condition \(\gamma^*(\lambda) \leq \gamma \) is equivalent to \((\lambda, \gamma) \in \Omega_+ \), which in turn is equivalent to \(\lambda^*(\gamma) \geq \lambda \). This proves the second identity. \(\square \)

It turns out that \(\gamma^*(\lambda) \) for \(\lambda > 0 \) is exactly the generalized \(\ell_2 \)-gain \(\kappa(\lambda) \) of the SLCS.

Theorem 3.1. The generalized \(\ell_2 \)-gain of the SLCS (1) satisfies \(\kappa(\lambda) = \gamma^*(\lambda) \) for all \(\lambda > 0 \). Thus,

\[
\kappa(\lambda) = \inf \{ \gamma > 0 : \lambda^*(\gamma) \geq \lambda \}, \quad \forall \lambda > 0, \\
\lambda^*(\gamma) = \sup \{ \lambda > 0 : \kappa(\lambda) \leq \gamma \}, \quad \forall \gamma > 0.
\]

Proof. Suppose \(\lambda > 0 \) is arbitrary. It suffices to show that the two conditions \(\gamma \geq \kappa(\lambda) \) and \(\gamma \geq \gamma^*(\lambda) \) are equivalent. By definition (4), \(\gamma \geq \kappa(\lambda) \) if and only if

\[
\sum_{t=0}^{\infty} \lambda^t \| x(t+1; \sigma, u, 0) \|^2 \leq \gamma^2 \sum_{t=0}^{\infty} \lambda^t \| u(t) \|^2, \quad \forall \sigma, \forall u \in U_\lambda.
\]

By (12), the above inequality holds if and only if \(G_{\lambda, \gamma}(0) = 0 \). By Proposition 3.5, the latter is equivalent to \(g_{\lambda, \gamma} < \infty \), i.e., \((\lambda, \gamma) \in \Omega \). Finally, \((\lambda, \gamma) \in \Omega \) is equivalent to \(\gamma \geq \gamma^*(\lambda) \) by the definition (21) of \(\gamma^*(\lambda) \). This proves the first statement. The rest follows from Proposition 3.11. \(\square \)

Theorem 3.1 connects the generating functions with the generalized \(\ell_2 \)-gain of the SLCSs. It implies that, to determine \(\kappa(\lambda) \), it suffices to characterize the DOC, or more precisely, the right/bottom boundary of the DOC. As an example, using Theorem 3.1 and Proposition 3.10, we arrive at the following result that is not obvious from the definition (4) (see Example 5.1 for more discussions).

Corollary 3.1. The generalized \(\ell_2 \)-gain \(\kappa(\lambda) \) is a non-decreasing function of \(\lambda \in \mathbb{R}_+ \).
4 One-dimensional Switched Linear Control Systems

We study a special class of SLCSs, i.e., one-dimensional (1-D) SLCSs or the SLCSs on \mathbb{R}.

4.1 One-dimensional Linear Control System

First consider the 1-D (non-switched) linear control system for some $a, b \in \mathbb{R}$:

$$x(t+1) = ax(t) + bu(t), \quad t \in \mathbb{Z}_+.$$ \hfill (22)

For any $\lambda, \gamma \in \mathbb{R}_+$, its generating function and finite horizon counterparts are all quadratic:

$$G_{\lambda, \gamma}(z) = g_{\lambda, \gamma}z^2, \quad G_{\lambda, \gamma,k}(z) = g_kz^2, \quad \forall z \in \mathbb{R}, k \in \mathbb{Z}_+.$$ \hfill (23)

In the following we focus on the nontrivial case $\lambda > 0$. The Bellman equation implies

$$g_{k+1}z^2 = z^2 + \lambda \cdot \sup_{v \in \mathbb{R}} \left[-\gamma^2 v^2 + g_k(az + bv)^2 \right], \quad \forall z \in \mathbb{R}$$ \hfill (23)

$$\Rightarrow \quad g_{k+1} = F_{a,b}(g_k), \quad k = 0, 1, \ldots, \text{ with } g_0 = 1.$$ \hfill (24)

Here, $F_{a,b} : \mathbb{R}_+ \to \mathbb{R}_+$ is non-decreasing and convex with $F_{a,b}(0) = 1$. The generating function $G_{\lambda, \gamma}(\cdot)$ is finite if the sequence (g_k) generated from (24) converges, i.e., $g_k \uparrow g_{\lambda, \gamma} < \infty$, or equivalently, if the graph of $F_{a,b}(g)$ intersects that of the identify function $\text{id}(g) := g$ at some $g > 0$.

Proposition 4.1. Given $\lambda > 0$, the DOC Ω_+ of the generating function $G_{\lambda, \gamma}(z) = g_{\lambda, \gamma}z^2$ for the system (22) and the corresponding $g_{\lambda, \gamma}$ are characterized as follows.

1. If $a = 0$ and $b \neq 0$, then $\Omega_+ = \{(\lambda, \gamma) \in \mathbb{R}_+^2 | \gamma \geq |b|, \lambda > 0\}$, on which $g_{\lambda, \gamma} \equiv 1$.
2. If $a \neq 0$ and $b = 0^2$, then $\Omega_+ = \{(\lambda, \gamma) | 0 < \lambda < 1/a^2\}$, on which $g_{\lambda, \gamma} = 1/(1 - a^2 \lambda)$.
3. If $a \neq 0, b \neq 0$, then $\Omega_+ = \{(\lambda, \gamma) | \gamma > |b|, 0 < \lambda \leq (\gamma - |b|)^2/(a^2 \gamma^2)\}$, on which

$$g_{\lambda, \gamma} = \frac{c_0 - \sqrt{(c_0)^2 - 4b^2\gamma^2}}{2b^2}, \quad \text{with } c_0 := b^2 + \gamma^2 - a^2 \lambda \gamma^2.$$ \hfill (25)

The proof of this proposition is given in Appendix D. Fig. 2 plots the DOC for the above three cases. In Case (2), since Assumption 2.1 is not satisfied, the DOC Ω is not a closed set.

Corollary 4.1. For the three cases in Proposition 4.1, the radius of convergence and the generalized ℓ_2-gain of system (22) are given by

1. $\lambda^*(\gamma) = \begin{cases} 0 & \text{if } 0 \leq \gamma < |b|, \\ \infty & \text{if } \gamma \geq |b|; \end{cases}$ and $\kappa(\lambda) = |b|$, $\forall \lambda \geq 0$;

Figure 2: The DOC of linear system (22) for the three cases in Proposition 4.1.
(2) \(\lambda^*(\gamma) = \frac{1}{a}, \forall \gamma \geq 0; \) and \(\kappa(\lambda) = \begin{cases} 0 & \text{if } 0 \leq \lambda < \frac{1}{a^2} \\ \infty & \text{if } \lambda \geq \frac{1}{a^2}; \end{cases} \)

(3) \(\lambda^*(\gamma) = \begin{cases} \frac{\gamma}{|\gamma|} & \text{if } 0 \leq \gamma \leq |b|; \\ \frac{|b|}{|\lambda|} & \text{if } \gamma > |b|; \end{cases} \) and \(\kappa(\lambda) = \begin{cases} \frac{|b|}{1 - \sqrt{|\lambda|a}} & \text{if } 0 \leq \lambda < \frac{1}{a^2} \\ \infty & \text{if } \lambda \geq \frac{1}{a^2}. \end{cases} \)

Remark 4.1. Two interesting facts are noted when \((\lambda, \gamma)\) is on the boundary of \(\Omega\). Consider Case (3) with \(a \neq 0, b \neq 0\). For a given \(\gamma > |b|\), let \(\lambda = \lambda^*\) be the \(\lambda^*(\gamma)\) given in Corollary 4.1. Plugging it into (25), we obtain \(g_{\lambda^*, \gamma} = \gamma/|b| < \infty\). Denote by \((g_k)\) the sequence generated by the iteration (24), i.e., \(G_{\lambda^*, \gamma, k}(z) = g_k|z|^2\). Then \(g_k \uparrow g_{\lambda^*, \gamma}\).

Fact 1: The convergence rate of \((g_k)\) to \(g_{\lambda^*, \gamma}\) is slower than exponential. This is because the linearized system of (24) around its equilibrium point \(g_{\lambda^*, \gamma}\) has Jacobian \(\frac{\partial}{\partial z} F_{a,b}(g_{\lambda^*, \gamma}) = 1\). Geometrically, the graphs of the function \(1 + (a^2 \lambda^2 \gamma^2)/(\gamma^2 - b^2 y)\) and the identity function are tangential at \(g_{\lambda^*, \gamma}\). In contrast, for \(\lambda \in (0, \lambda^*), (g_k)\) converges to \(g_{\lambda, \gamma}\) exponentially fast (cf. Corollary 5.1).

Fact 2: As the time horizon \(k\) increases, the “optimal” input sequence and the resulting state sequence that achieve the supremum in the definition (13) of \(k\)-horizon generating function both have unbounded energy. To see this, we first find the optimal control \(u^*\) achieving \(G_{\lambda^*, \gamma, k}(z) = g_k|z|^2\) for a horizon \(k \geq 1\). From (23) with \(\lambda = \lambda^*\) and \(k - 1\) replaced by \(k\), we see that, starting from \(x^*(0) = z\), the optimal control \(u^*(0) = abg_{k-1}/(\gamma^2 - b^2 g_{k-1})x^*(0)\). Plugging this into (22) yields \(x^*(1) = a^2/(\gamma^2 - b^2 g_{k-1})x^*(0)\). Thus, the \(k\)-horizon optimal control \(u^*\) and \(x^*\) are \(u^*(t) = abg_{k-t}/(\gamma^2 - b^2 g_{k-t})x^*(t)\) and \(x^*(t+1) = a^2/(\gamma^2 - b^2 g_{k-t})x^*(t)\) for \(t = 0, 1, \ldots, k-1\). The energy of the state sequence \(x^*\) up to time \(k\), \(J_k(x^*) = \sum_{t=0}^{k-1}(\lambda^*|x^*(t)|^2)\), is given by

\[
J_k(x^*) = z^2 \sum_{t=0}^{k-1} \left(\frac{\gamma/|b| - 1}{\gamma/|b| - g_{k-1-t}/g_{\lambda^*, \gamma}} \right)^2,
\]

which tends to infinity as \(k \to \infty\) since \(g_k \to g_{\lambda^*, \gamma}\). Similarly, we can show that the energy of the control sequence, \(J_k(u^*)\), tends to \(\infty\) as \(k \to \infty\). Thus, while both \(J_k(x^*)\) and \(J_k(u^*)\) approach \(\infty\) as \(k \to \infty\), their difference is bounded and approaches the finite value \(G_{\lambda^*, \gamma}(z)\).

4.2 One-dimensional SLCS

Consider the SLCS on \(\mathbb{R}\) with each \(a_i, b_i \in \mathbb{R}\):

\[
x(t+1) = a_\sigma(t)x(t) + b_\sigma(t)u(t), \quad t \in \mathbb{Z}_+, \sigma(t) \in \mathcal{M}.
\]

(26)

The generating functions of the SLCS (26) are quadratic, i.e., \(G_{\lambda, \gamma}(z) = g_{\lambda, \gamma}z^2\), \(G_{\lambda, \gamma, k}(z) = g_kz^2\), \(\forall z \in \mathbb{R}\). It follows from the Bellman equation that \(g_k\) is recursively defined by

\[
g_{k+1} = \max_{i \in \mathcal{M}} F_{a_i, b_i}(g_k), \quad g_0 = 1,
\]

(27)

where \(F_{a, b} : \mathbb{R}+ \to \mathbb{R}+\) is defined in (24) with \((a, b)\) replaced by \((a_i, b_i)\). The generating function is finite if and only if the above iteration converges, or equivalently, the graph of the convex function \(\max_{i \in \mathcal{M}} F_{a_i, b_i}(\cdot)\) intersects that of the identity function. If this is indeed the case, then the first intersection point of the two graphs occurs at \(g = g_{\lambda, \gamma}\).

Denote by \(g^{(i)}_{\lambda, \gamma} \in \mathbb{R} + \{+\infty\}, i \in \mathcal{M}\), the final value of the iteration (24) with \((a, b)\) replaced by \((a_i, b_i)\), which characterizes the generating function of the \(i\)-th subsystem without switching. Clearly, \(g_{\lambda, \gamma} \geq \max_{i \in \mathcal{M}} g^{(i)}_{\lambda, \gamma}\). It is possible that a strict inequality holds. Due to the convexity of \(F_{a, b}(\cdot)\), this is only possible if \(g_{\lambda, \gamma} = \infty\) while \(g^{(i)}_{\lambda, \gamma} < \infty\) for all \(i \in \mathcal{M}\).
Figure 3: SLCS in Example 4.1. Left: plots of $F_{a_i,b_i}(g)$ for $\lambda = 0.7, \gamma = 2$; Middle: plots of $F_{a_i,b_i}(g)$ for $\lambda = 0.5, \gamma = 2$; Right: boundaries of DOCs of the SLCS and its two subsystems.

Example 4.1. Consider a 1-D SLCS with two subsystems: $a_1 = 0.3, b_1 = 1, a_2 = 1, b_2 = 0.3$. In the first two figures of Fig. 3, we plot the functions $F_{a_i,b_i}(g)$, $i = 1, 2$, for two different choices of λ, γ. In the left subfigure where $\lambda = 0.7$ and $\gamma = 2$, the graph of either function intersects that of Id (dashed dotted line) while the graph of their maximum does not. Thus, without switching both subsystems have finite generating functions while the SLCS has an infinite one: $g_{\lambda,\gamma} > \max_{i=1,2} g^{(i)}_{\lambda,\gamma}$. In the middle subfigure, we set $\lambda = 0.5$ and $\gamma = 2$, in which case $g_{\lambda,\gamma} = \max_{i=1,2} g^{(i)}_{\lambda,\gamma} < \infty$.

Determining the convergence of (27), and if so, the limit $g_{\lambda,\gamma}$, is achieved by solving the following optimization problem:

$$
\text{minimize } g \text{ subject to } F_{a_i,b_i}(g) \leq h \leq g, \forall i \in M. \quad (28)
$$

The feasible set of (g,h) in (28) is the part of the epigraph of $\max_{i \in M} F_{a_i,b_i}(g)$ on and below the graph of the identity function (e.g., the shaded region in the middle subfigure of Fig. 3). The solution of (28) is exactly $g_{\lambda,\gamma}$ if the feasible set is nonempty. Otherwise $g_{\lambda,\gamma} = \infty$. Note that each constraint $F_{a_i,b_i}(g) \leq h$ can be reduced to linear and/or second order cone constraints:

1. In the case $a_i = 0$: $g \leq \gamma^2/b_i^2$ and $h \geq 1$;
2. In the case $a_i \neq 0, b_i = 0$: $h \geq 1 + a_i^2 \lambda g$;
3. In the case $a_i \neq 0, b_i \neq 0$: $0 \leq g \leq \gamma^2/b_i^2$, $h \geq 1$, and
 $$
 \left[b_i^2(h - g) + c_1 \right] \leq b_i^2(\gamma^2/b_i^2 - 2a_i^2\lambda g - 2\gamma^2) + c_2,
 $$
 where $c_1 = a_i^2\lambda \gamma^2 - b_i^2 - 2\gamma^2$ and $c_2 = a_i^2\lambda \gamma^2 - b_i^2 + 2\gamma^2$.

Thus (28) is a second order cone program that can be solved efficiently.

Using the software tool SeDuMi [25], the boundaries of the DOCs for the SLCS in Example 4.1 (solid line) and for its two subsystems (dashed dot and dash lines, respectively) are computed and are depicted in the right subfigure Fig. 3. Clearly, the DOC of the SLCS is a proper subset of the intersection of its two subsystems’ DOCs. Furthermore, it is noted that the DOCs are not convex.

5 Representation and Approximation of Generating Functions

This section uncovers important properties of $G_{\lambda,\gamma,k}(\cdot)$ on the interior of the DOC, i.e., Ω°, which will be exploited to develop numerical algorithms for computing the generating function $G_{\lambda,\gamma}$.

Define the following set

$$
W := \left\{ (\lambda, \gamma) \in \mathbb{R}_+^2 \mid \lambda > 0, \gamma^2 > \sup_{i \in M, v \in S^{m-1}} G_{\lambda,\gamma}(B_iv) \right\}.
$$

16
Lemma 5.1. The following holds: \(\Omega^c \subseteq W \subseteq \Omega_+ \), where \(\Omega_+ \) is the part of \(\Omega \) with \(\lambda > 0 \).

Proof. That \(W \subseteq \Omega_+ \) is a direct consequence of Statement 5) of Proposition 3.5. To show \(\Omega^c \subseteq W \), assume \((\lambda, \gamma) \in \Omega^c \), which satisfies \(\lambda > 0 \). If there exist \(i_0 \in \mathcal{M} \) and \(v_0 \in \mathbb{R}^{m-1} \) such that \(G_{\lambda,\gamma}(B_{i_0}v_0) \geq \gamma^2 \), then for any sufficiently small \(\varepsilon > 0 \), \(G_{\lambda,\gamma-\varepsilon}(B_{i_0}v_0) \geq G_{\lambda,\gamma}(B_{i_0}v_0) \geq \gamma^2 > (\gamma - \varepsilon)^2 \). By 5) of Proposition 3.5, \((\lambda, \gamma - \varepsilon) \notin \Omega \) for small \(\varepsilon > 0 \), contradicting the assumption \((\lambda, \gamma) \in \Omega^c \). Thus, \(G_{\lambda,\gamma}(B_tv) < \gamma^2 \), \(\forall v \in \mathbb{R}^{m-1}, \) i.e., \((\lambda, \gamma) \in W \).

Denote by \(P \) the set of all \(n \times n \) symmetric positive definite matrices. Whenever a matrix \(P \in \mathbb{R} \), we obtain, for any \(\lambda, \gamma \),

\[
\mathbb{P}_{\lambda,\gamma} := \{ P \in \mathbb{P} | G_{\lambda,\gamma}(z) \geq z^TPz, \forall z \in \mathbb{R}^n \}.
\]

Obviously, \(\mathbb{P}_{\lambda,\gamma} \) is nonempty since it contains the identity matrix \(I \). For any \(P \in \mathbb{P}_{\lambda,\gamma} \), we have \(\gamma^2 \geq G_{\lambda,\gamma}(B_tv) \geq v^TB_i^TPB_iv \) for any \(v \in \mathbb{R}^{m-1} \), and hence \(\gamma^2 I - B_i^TPB_i > 0, \forall v \in \mathbb{R}^{m-1} \). Thus the following mapping \(\rho_{\lambda,\gamma,i} : \mathbb{P}_{\lambda,\gamma} \rightarrow \mathbb{P} \) is well defined for each \(i \in \mathbb{M} \):

\[
\rho_{\lambda,\gamma,i}(P) := I + \lambda A_i^TPA_i + \lambda A_i^TPB_i(\gamma^2 I - B_i^TPB_i)^{-1}B_i^TPA_i, \quad \forall P \in \mathbb{P}_{\lambda,\gamma}.
\]

This mapping is called the Riccati mapping of the subsystem \(i \in \mathbb{M} \) of the SLCS (1).

Lemma 5.2. For any \((\lambda, \gamma) \in W \) and \(i \in \mathbb{M} \), the Riccati mapping \(\rho_{\lambda,\gamma,i} : \mathbb{P}_{\lambda,\gamma} \rightarrow \mathbb{P}_{\lambda,\gamma} \) is a self mapping of \(\mathbb{P}_{\lambda,\gamma} \).

Proof. Let \((\lambda, \gamma) \in W \) and \(P \in \mathbb{P}_{\lambda,\gamma} \) be arbitrary. Then \(G_{\lambda,\gamma}() \) is finite everywhere. Using the Bellman equation (16) and the definition of \(\mathbb{P}_{\lambda,\gamma} \), we obtain, for any \(z \in \mathbb{R}^n \),

\[
G_{\lambda,\gamma}(z) \geq \sup_{i \in \mathcal{M}, v \in \mathbb{R}^{m-1}} \left[\|z\|^2 - \lambda \cdot \gamma^2 \|v\|^2 + \lambda \cdot (A_iz + B_iv)^TP(A_iz + B_iv) \right] = \max_{i \in \mathcal{M}} z^TP_{\lambda,\gamma,i}(P)z,
\]

where the last step follows by choosing the optimal \(v^* = (\gamma^2 I - B_i^TPB_i)^{-1}B_i^TPA_iz \) for each \(i \) in the supremum. This shows that \(\rho_{\lambda,\gamma,i}(P) \in \mathbb{P}_{\lambda,\gamma}, \forall i \in \mathbb{M} \).

Let \((\lambda, \gamma) \in W \). The set-valued switched Riccati mapping \(\rho_{\lambda,\gamma,M} : 2^\mathcal{P}_{\lambda,\gamma} \rightarrow 2^\mathbb{P}_{\lambda,\gamma} \) is defined as

\[
\rho_{\lambda,\gamma,M}(A) := \{ \rho_{\lambda,\gamma,i}(P) | i \in \mathbb{M} \text{ and } P \in A \}, \quad \forall A \subseteq \mathbb{P}_{\lambda,\gamma},
\]

which maps \(A \) to \(\rho_{\lambda,\gamma,M}(A) \), both of which are subsets of \(\mathbb{P}_{\lambda,\gamma} \). The following sequence of subsets of \(\mathbb{P}_{\lambda,\gamma} \), called the Switched Riccati Sets (SRSs), can be generated recursively:

\[
\mathcal{H}_0 := \{ I \}, \quad \text{and} \quad \mathcal{H}_{k+1} := \rho_{\lambda,\gamma,M}(\mathcal{H}_k), \quad \forall k \in \mathbb{Z}_+.
\]

It turns out that \(\mathcal{H}_k \)'s completely characterize the finite-horizon generating functions \(G_{\lambda,\gamma,k}(\cdot) \), as stated in the next proposition whose proof is given in Appendix E.

Proposition 5.1. Suppose \((\lambda, \gamma) \in W \). The following hold:

1) \(G_{\lambda,\gamma,k}(z) = \max_{P \in \mathcal{H}_k} z^TPz, \forall z \in \mathbb{R}^n, \forall k \in \mathbb{Z}_+; \)

2) For each \(z \in \mathbb{R}^n \), the supremum in the Bellman equation (16) can be achieved by some \(i_*(z) \in \mathcal{M} \) and \(v_*(z) \in \mathbb{R}^{m-1} \), namely, \(G_{\lambda,\gamma}(z) = \|z\|^2 - \lambda \cdot \gamma^2 \|v_*(z)\|^2 + \lambda \cdot G_{\lambda,\gamma}(A_{i_*(z)}z + B_{i_*(z)}v_*(z)) \), that are homogeneous along the ray directions: \(i_*(\alpha z) = i_*(z) \) and \(v_*(\alpha z) = \alpha \cdot v_*(z) \) for all \(\alpha > 0 \) and \(z \in \mathbb{R}^n \); and that \(v_*(z) \) is uniformly bounded in \(z \): \(\|v_*(z)\| \leq K_v \|z\|, \forall z \in \mathbb{R}^n, \) for some finite constant \(K_v \in \mathbb{R}_+ \) independent of \(z \);
3) For any \(z \in \mathbb{R}^n \) and any \(k \in \mathbb{Z}_+ \), the supremum in the Bellman equation (15) can be achieved by some \(i^k_z(z) \in \mathcal{M} \) and \(v^k_z(z) \in \mathbb{R}^m \) that have the same homogeneous and uniformly bounded properties (and the same constant \(K_v \) as well) as \(i_z(z) \) and \(v_z(z) \) in 2).

The first statement of Proposition 5.1 shows that, for \((\lambda, \gamma) \in \mathcal{W} \), each finite horizon generating function is piecewise quadratic and continuous in \(z \) and can be represented by a finite set \(\mathcal{H}_k \) of matrices generated by an iterative algorithm in (30). Furthermore, the optimal state sequence \(x^k_t(t) \) and control sequence \(u^k_t(t) \) over the horizon \(t = 0, \ldots, k - 1 \) achieving \(G_{\lambda,\gamma,k}(z) \) can be obtained from the solution of a closed-loop system adopting in sequence the optimal state feedback switching and control policy \((i^k_t(-t), v^k_t(-t)) \) given in (39) of Appendix E for \(t = 0, 1, \ldots, k - 1 \). In what follows, we discuss the implications of this representation for the infinite horizon case.

Let \((\lambda, \gamma) \in \mathcal{W} \). Then \(i_z(\cdot) \) and \(u_z(\cdot) \) defined in Statement 2) of Proposition 5.1 specify a state feedback switching and control policy for the SLCS (1). Denote by \(\hat{x}(t) \) the resulting state trajectory under this policy starting from the initial state \(z(0) = 0 \), and

\[
\hat{x}(k + 1) = A_{x_z,z}(k)\hat{x}(k) + B_{x_z,z}(k)u_z(\hat{x}(k)), \quad \forall k \in \mathbb{Z}_+,
\]

where \(\sigma_{x_z}(k) = i_z(\hat{x}(k)), \) \(u_z(\hat{x}(k)) = v_z(\hat{x}(k)) \). The switching and control sequences \(\sigma_{x_z}(\cdot) \) and \(u_z(\cdot) \) above are in general dependent on \(z \). In the case this dependency needs to be highlighted, we write \(\hat{x}(\cdot) \) explicitly as \(\hat{x}(\cdot; \sigma_{x_z}, u_z, z) \). Under \((\sigma_{x_z}, u_z) \), the supremum in the Bellman equation (16) is exactly achieved at each step along \(\hat{x}(\cdot) \), i.e., for each \(k \in \mathbb{Z}_+ \),

\[
G_{\lambda,\gamma}(z) = G_{L,\gamma} (\hat{x}(0)) = ||\hat{x}(0)||^2 - \gamma^2 \lambda ||u_z(0)||^2 + \lambda \cdot G_{L,\gamma}(\hat{x}(1)) = \cdots = \sum_{t=0}^{k} \lambda^t \left[||\hat{x}(t)||^2 - \gamma^2 \lambda ||u_z(t)||^2 \right] + \lambda^{k+1} G_{L,\gamma}(\hat{x}(k+1)).
\] (31)

In contrast, when a generic switching-control sequence \((\sigma, u) \) is applied, the resulting state trajectory \(x(\cdot; \sigma, u, z) \) satisfies only the inequality, i.e., for each \(k \in \mathbb{Z}_+ \),

\[
G_{\lambda,\gamma}(z) \geq \lambda^t \left[||x(t; \sigma, u, z)||^2 - \gamma^2 \lambda ||u(t)||^2 \right] + \lambda^{k+1} G_{L,\gamma}(x(k+1; \sigma, u, z)).
\] (32)

For the above reason, we refer to \((\sigma_{x_z}, u_z) \) as a Bellman switching-control sequence for a given initial state \(z \). Note that such sequences may not be unique. The results developed in the following proposition hold uniformly for all possible Bellman switching-control sequences; the proof of this proposition can be found in Appendix F.

Proposition 5.2. Let \((\lambda, \gamma) \in \Omega^\circ \) and let \((\sigma_{x_z}, u_z) \) be any choice of the Bellman switching-control sequences for an arbitrary initial state \(z \in \mathbb{R}^n \). Then the following hold:

1) \(u_z \in U_L \);

2) \(\sqrt{\lambda} \cdot \hat{x}(t; \sigma_{x_z}, u_z, z) \rightarrow 0 \) as \(t \rightarrow \infty \), and \((\sigma_{x_z}, u_z) \) achieves the supremum in the definition (11) of \(G_{\lambda,\gamma}(z) \), namely, \(G_{\lambda,\gamma}(z) = \sum_{t=0}^{\infty} \lambda^t \left[||\hat{x}(t; \sigma_{x_z}, u_z, z)||^2 - \gamma^2 \lambda \sum_{t=0}^{\infty} \lambda^t \left[||u_z(t)||^2 \right] \right] ; \)

3) The trajectories \(\sqrt{\lambda} \cdot \hat{x}(t; \sigma_{x_z}, u_z, z) \) are uniformly bounded for all \(z \in \mathbb{R}^n \);

4) The \(\sqrt{\lambda} \)-discounted state trajectories of the SLCS (1), i.e., \(\sqrt{\lambda} \cdot \hat{x}(t; \sigma_{x_z}, u_z, z) \), are (strongly) asymptotically stable at the origin.

Based on the above proposition, we show the strong exponential stability of the closed-loop system using the Bellman switching-control sequence; see Appendix G for its proof.
Theorem 5.1. Let \((\lambda, \gamma) \in \Omega^o\). Then the \(\sqrt{\lambda}\)-discounted state trajectories \(\sqrt{\lambda} \cdot \hat{x}(t; \sigma_{s,z}, u_{s,z}, z)\) of the SLCS (1) under any Bellman switching-control policy \((\sigma_{s,z}, u_{s,z})\) are (strongly) exponentially stable at the origin, i.e., there exist constants \(\rho > 0\) and \(r \in [0,1)\) such that for any \(z \in \mathbb{R}^n\) and \((\sigma_{s,z}, u_{s,z}), \|\sqrt{\lambda} \cdot \hat{x}(t; \sigma_{s,z}, u_{s,z}, z)\| \leq \rho \cdot r^t \|z\|, \forall t \in \mathbb{Z}_+\).

The next corollary shows that the exponential stability of the closed-loop system of the SLCS (1) under \((\sigma_{s,z}, u_{s,z})\) leads to exponential convergence of \((G_{\lambda,\gamma,k})\) to \(G_{\lambda,\gamma}\) on the unit sphere. This result is a cornerstone for numerical approximation of the generating function \(G_{\lambda,\gamma}\) discussed in Section 6.

Corollary 5.1. Let \((\lambda, \gamma) \in \Omega^o\). Then the sequence of finite-horizon generating functions \((G_{\lambda,\gamma,k})\) converges uniformly exponentially on \(\mathbb{S}^{n-1}\) to \(G_{\lambda,\gamma}\) as \(k \to \infty\), i.e., there exist constants \(\varrho > 0\) and \(\eta \in [0,1)\) such that \(|G_{\lambda,\gamma}(z) - G_{\lambda,\gamma,k}(z)| \leq \varrho \cdot \eta^k, \forall z \in \mathbb{S}^{n-1}, k \in \mathbb{Z}_+\).

Proof. It follows from (31) and Theorem 5.1 that, for any Bellman switching-control sequence \((\sigma_{s,z}, u_{s,z})\) associated with \(z \in \mathbb{S}^{n-1}\) and any \(k \in \mathbb{Z}_+\),

\[
G_{\lambda,\gamma}(z) = \sum_{t=0}^{k} \lambda^t \left(\|\hat{x}(t; \sigma_{s,z}, u_{s,z}, z)\|^2 - \gamma^2 \|u_{s,z}(t)\|^2 + \lambda^{k+1} G_{\lambda,\gamma}(\hat{x}(k+1; \sigma_{s,z}, u_{s,z}, z))\right) \\
\leq G_{\lambda,\gamma,k}(z) + g_{\lambda,\gamma}(\rho r^{k+1})^2.
\]

The corollary thus holds with \(\varrho := g_{\lambda,\gamma}(\rho r)^2\) and \(\eta := r^2\).

Example 5.1. Consider the following SLCS with a constant \(\theta > 1\) that satisfies Assumption 2.1:

\[
A_1 = 0, \quad B_1 = \theta \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \quad A_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
\]

For all \(P \in \mathbb{R}^{2 \times 2}\) such that \(B_i^T P B_i < \gamma^2 I\), the Riccati mapping for subsystem \(i \in \{1, 2\}\) is

\[
\rho_{\lambda,\gamma,i}(P) = I + \lambda A_i^T P A_i + \lambda A_i^T P B_i (\gamma^2 I - B_i^T P B_i)^{-1} B_i^T P A_i.
\]

For a diagonal matrix \(P = \text{diag}(p_1, p_2)\), it is easy to see that \((1) \rho_{\lambda,\gamma,1}(P) \equiv I\) if \(\theta^2 p_1 < \gamma^2\); and \((2) \rho_{\lambda,\gamma,2}(P) = \text{diag}(1, 1 + \lambda p_1)\) if \(p_2 < \gamma^2\). Assume \(\gamma > \theta\) and \(\gamma > \sqrt{\lambda + \chi}\), and let \(P_\lambda := \text{diag}(1,1+\lambda)\).

Then the Riccati iteration of the SLCS is given by: \(\mathcal{H}_0 = \{I\}, \mathcal{H}_1 = \left\{\rho_{\lambda,\gamma,\lambda}(H_0) = \{I, P_\lambda\}\right\}, \mathcal{H}_2 = \rho_{\lambda,\gamma,\lambda}(H_1) = \{I, P_\lambda, \rho_{\lambda,\gamma,1}(P_\lambda), \rho_{\lambda,\gamma,2}(P_\lambda)\} = \{I, P_\lambda\}, \) and \(\mathcal{H}_k = \{I, P_\lambda\}, \forall k = 3, 4, \ldots\). Note that \(I\) is redundant because \(I \leq P_\lambda\). Thus \(G_{\lambda,\gamma}(z) = G_{\lambda,\gamma,k}(z) = z^T P_\lambda z \Rightarrow g_{\lambda,\gamma} = 1 + \lambda < \infty\). This implies that the interior of \(\text{DOC}\) contains the intersection of \(\Omega_1^\theta = \{(\lambda, \gamma) | \gamma > \theta\}\) and \(\Omega_2^\theta = \{(\lambda, \gamma) | \gamma > \sqrt{\lambda + \chi}\}\), where \(\Omega_1^\theta\) and \(\Omega_2^\theta\) are the interiors of the DOC of subsystem 1 and subsystem 2, respectively. Therefore, \(\Omega^\theta = \{(\lambda, \gamma) | \gamma > \max(\sqrt{\lambda + \chi}, \theta)\}\). This shows that \(\kappa(\lambda) = \max(\sqrt{\lambda + \chi}, \theta), \forall \lambda > 0\), which remains constant for all \(\lambda \in (0, \theta^2 - 1)\).

6 Computation of Generating Functions

In this section, the results established in Section 5 are exploited to develop numerical algorithms for computing the generating functions, and hence the generalized \(\ell_2\)-gain of the SLCS (1).
6.1 Numerical Algorithms

As shown in Proposition 3.8 and Corollary 5.1, if \((\lambda, \gamma) \in \Omega\), the finite-horizon generating functions \(G_{\lambda,\gamma,k}(\cdot)\) converge uniformly on the unit sphere to the infinite-horizon generating function \(G_{\lambda,\gamma}(\cdot)\) as \(k \to \infty\); and the convergence is uniformly exponential when \((\lambda, \gamma) \in \Omega^\circ\). Thus, a strategy to compute \(G_{\lambda,\gamma}(\cdot)\) within a given accuracy is to compute \(G_{\lambda,\gamma,k}(\cdot)\) for sufficiently large \(k\). By Proposition 5.1, each \(G_{\lambda,\gamma,k}(\cdot)\) is represented by a finite set \(\mathcal{H}_k\) of positive definite matrices: \(G_{\lambda,\gamma,k}(z) = \sup_{P \in \mathcal{H}_k} z^T P z\), where \(\mathcal{H}_k\) is generated through the switched Riccati iteration procedure in (30). This yields a basic algorithm for computing \(\mathcal{H}_k\), hence \(G_{\lambda,\gamma,k}\).

A drawback of this basic algorithm is that its complexity measured by the size of the set \(\mathcal{H}_k\) grows exponentially as \(k\) increases: \(|\mathcal{H}_k| = |\mathcal{M}|^k\), where \(|\mathcal{M}|\) is the number of subsystems of the SLCS. To reduce complexity, a technique originally proposed in [31] is employed. Note that not all matrices in \(\mathcal{H}_k\) are useful in the representation \(G_{\lambda,\gamma,k}(z) = \sup_{P \in \mathcal{H}_k} z^T P z\). A matrix \(P \in \mathcal{H}_k\) is redundant if it can be removed without affecting the representation, or more precisely, if for any \(z \in \mathbb{R}^n\), we can find \(P' \in \mathcal{H}_k\) with \(P' \neq P\) such that \(z^T P z \leq z^T P' z\). A sufficient (though not necessary) condition for \(P \in \mathcal{H}_k\) to be redundant is

\[
P \preceq \sum_{P' \in \mathcal{H}_k, P' \neq P} \alpha_{P'} P'
\]

for some nonnegative constants \(\alpha_{P'}\) that sum up to one. This condition can be formulated as an LMI feasibility problem and checked efficiently by convex optimization software. By incorporating this technique, the basic switched Riccati iteration is enhanced and summarized in Algorithm 1.

Algorithm 1 (Enhanced Switched Riccati Iteration)

\[
\begin{align*}
k & \leftarrow 0 \text{ and } \mathcal{H}_0 \leftarrow \{I\}; \\
& \text{repeat} \\
& \quad k \leftarrow k + 1; \\
& \quad \mathcal{H}_k \leftarrow \rho_{\lambda,\gamma,M}(\mathcal{H}_{k-1}); \\
& \quad \text{for } P \in \mathcal{H}_k \text{ do} \\
& \quad \quad \text{if } P \text{ satisfies condition (33) then} \\
& \quad \quad \quad \mathcal{H}_k \leftarrow \mathcal{H}_k \setminus \{P\}; \\
& \quad \quad \text{end if} \\
& \quad \text{end for} \\
& \text{until prescribed stopping criteria are met} \\
& \text{Return } \mathcal{H}_k \text{ and } G_{\lambda,\gamma,k}(z) = \sup_{P \in \mathcal{H}_k} z^T P z, \forall z \in \mathbb{R}^n.
\end{align*}
\]

The computational complexity of Algorithm 1 may still be prohibitive, especially when the state space dimension \(n\) and the number of subsystems are large. Inspired by the idea of relaxed dynamic programming [17], complexity can be further reduced (though at the expense of accuracy) by removing those matrices that are almost redundant at each iteration. For a given small \(\varepsilon > 0\), a matrix \(P\) in \(\mathcal{H}_k\) is called \(\varepsilon\)-redundant ([31, 32]) if its relaxed version, \(P - \varepsilon I\), is redundant in \(\mathcal{H}_k\). Again, an easy-to-check sufficient condition for \(\varepsilon\)-redundancy is given by (33) with the matrix \(P\) on the left hand side replaced by \(P - \varepsilon I\). Denote by \(\mathcal{H}_k^\varepsilon\) the remaining set after removing all the \(\varepsilon\)-redundant matrices from \(\mathcal{H}_k\). Then, \(\max_{P \in \mathcal{H}_k^\varepsilon} z^T P z - \varepsilon \|z\|^2 \leq \max_{P \in \mathcal{H}_k} z^T P z \leq \max_{P \in \mathcal{H}_k} z^T P z\). Thus, pruning \(\varepsilon\)-redundant matrices at each iteration leads to an under approximation error of the generating function by at most \(\varepsilon \|z\|^2\). This yields a new algorithm, i.e., Algorithm 2.

Since errors are introduced at each step and accumulate with the iteration, the functions \(\tilde{G}_{\lambda,\gamma,k}(\cdot)\) returned by Algorithm 2 are in general only under approximations of the true generating functions
Algorithm 2 (Relaxed Switched Riccati Iteration)

\[k \leftarrow 0 \text{ and } \mathcal{H}_0 \leftarrow \{I\}; \]

\[\text{repeat} \]

\[k \leftarrow k + 1; \]

\[\mathcal{H}_k \leftarrow \rho_{\lambda, \gamma, M} (\mathcal{H}_{k-1}); \]

\[\mathcal{H}_k \leftarrow \mathcal{H}_k^\varepsilon \text{ where } \mathcal{H}_k^\varepsilon \text{ is obtained by removing } \varepsilon \text{-redundant matrices from } \mathcal{H}_k; \]

\[\text{until prescribed stopping criteria are met} \]

Return \(\mathcal{H}_k \) and \(\tilde{G}_{\lambda, \gamma, k}(z) = \sup_{P \in \mathcal{H}_k} z^T P z, \forall z \in \mathbb{R}^n. \)

Figure 4: Results of Algorithm 1 on Example 6.1 with \(\lambda = 1.1 \) and \(\gamma = 8 \): (a) the size of matrix set \(\mathcal{H}_k \) vs. the number of iterations \(k \); (b) the level curves \(G_{\lambda, \gamma, k}(\cdot) = 1 \) for different \(k \); (c) the DOC \(\Omega \) (shaded region).

\(G_{\lambda, \gamma, k}(\cdot) \). It is shown in [32] that, by a suitable choice of \(\varepsilon \), the relaxation technique can lead to a significant reduction in the size of the matrix sets while maintaining a prescribed accuracy when solving the switched LQR problem. A similar error analysis can be extended to Algorithm 2, but detailed discussions are beyond the scope of the present paper and will be reported in future.

6.2 Numerical Examples

Several numerical examples are presented as follows to illustrate the proposed algorithms.

Example 6.1. Consider the following SLCS:

\[
\begin{align*}
A_1 &= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, & B_1 &= \begin{bmatrix} 1 \\ 2 \end{bmatrix}; & A_2 &= \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}, & B_2 &= \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \\
A_3 &= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, & B_3 &= \begin{bmatrix} 1 \\ 2 \end{bmatrix}; & A_4 &= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, & B_4 &= \begin{bmatrix} 1 \\ 1 \end{bmatrix},
\end{align*}
\]

which satisfies the reachability assumption. Fig. 4 shows the results of applying Algorithm 1 to compute the generating functions \(G_{\lambda, \gamma, k}(\cdot) \) for \(\lambda = 1.1 \) and \(\gamma = 8 \) and various \(k \). Although in theory the size of matrix sets \(\mathcal{H}_k \) could grow exponentially fast with the maximum size being \(4^k \),
the actual size after removing redundant matrices never exceeds five, as can be seen from Fig. 4(a). This indicates the effectiveness of the complexity reduction technique in Algorithm 1. In Fig. 4(b), we plot the level curves $G_{\lambda,\gamma,k}(\cdot) = 1$ for different k. As k increases, the level curves shrink to an equilibrium curve away from the origin. As a result, $G_{\lambda,\gamma,k}(\cdot)$ is finite and hence $(1.1, 8) \in \Omega$.

By repeating the above procedure for different combinations of λ and γ, the DOC Ω is found and plotted as the shaded region in Figure 4(c). By Theorem 3.1, the generalized ℓ_2-gain $\kappa(1)$ of the SLCS is approximately 5.8. By using a bisection type algorithm, a finer estimate of $\kappa(1)$ within arbitrary precision can be further achieved. It is noted that sufficient conditions based approaches (e.g., [2, 3]) often give conservative estimates of the ℓ_2-gain; see Example 6.3 for more results. ◊

In more extensive tests, a set of SLCSs on \mathbb{R}^3 are randomly generated, each with three stable single-input subsystems. Algorithm 1 is applied to compute the generating functions up to the horizon $k = 75$ for $\lambda = 0.75, \gamma = 15$. Only those SLCSs for which the computation converges at $k = 75$ are kept, and a total of 250 such SLCSs are generated. Fig. 5 displays the number of matrices required to characterize the generating function $G_{\lambda,\gamma,k}(\cdot)$. We observe that a maximum of 19 matrices are needed among the 250 cases while a majority of the cases require fewer than 8 matrices. Running on an Intel Core2Duo desktop and using SeDuMi, it takes typically 3–15 minutes to compute $k = 75$ iterations of the generating functions for a randomly generated SLCS.

Example 6.2. To demonstrate the effectiveness of relaxation, consider the following SLCS from the above randomly generated ones with the highest complexity:

\[
A_1 = \begin{bmatrix} 0.1515 & 0.2351 & 0.3763 \\ 0.2696 & 0.3257 & 0.1295 \\ 0.0822 & 0.2374 & 0.2100 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0.9981 \\ 0.1132 \\ 0.3316 \end{bmatrix},
\]

\[
A_2 = \begin{bmatrix} 0.1719 & 0.1846 & 0.1186 \\ 0.2420 & 0.2792 & 0.3645 \\ 0.0066 & 0.3453 & 0.1936 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0.6511 \\ 0.2015 \\ 0.7880 \end{bmatrix},
\]

\[
A_3 = \begin{bmatrix} 0.3249 & 0.0105 & 0.1955 \\ 0.0499 & 0.1833 & 0.3756 \\ 0.2664 & 0.0009 & 0.4905 \end{bmatrix}, \quad B_3 = \begin{bmatrix} 0.2872 \\ 0.0415 \\ 0.6339 \end{bmatrix}.
\]

For $\lambda = 0.75$ and $\gamma = 15$, Algorithm 1 requires 19 matrices for representing the generation function after $k = 75$ iterations, and the level curve $\{z : G_{\lambda,\gamma,75}(z) = 1\}$ is plotted in Fig. 6(a). In comparison, Algorithm 2 with the relaxation parameter $\varepsilon = 10^{-3}$ requires only 14 matrices. This number is
further reduced to 9 if $\varepsilon = 10^{-2}$. In both the cases, the maximum error incurred due to relaxation is less than 10^{-3} on the unit sphere in \mathbb{R}^3. The DOC of the SLCS is shown in Fig. 6(b). ◇

The next example compares the generating function approach with several other methods.

Example 6.3. Consider the continuous-time bimodal SLCS adapted from [3, Sec. IV.A] with mode 1: $\dot{x} = \begin{bmatrix} 0 & 1 \\ -10 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$, and mode 2: $\dot{x} = \begin{bmatrix} 0 & 1 \\ -0.1 & -0.5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$. This SLCS is discretized with the sampling time 0.5 s and zero order hold on the control input, and after scaling its subsystem dynamics matrices by $\sqrt{0.6}$, we obtain the discrete-time SLCS defined by

$$A_1 = \begin{bmatrix} 0.1024 & 0.1932 \\ -1.9319 & -0.0908 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0.0868 \\ 0.2494 \end{bmatrix}; \quad A_2 = \begin{bmatrix} 0.7657 & 0.3413 \\ -0.0341 & 0.5951 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0.1150 \\ 0.4406 \end{bmatrix}.$$

We first consider the LMI sufficient conditions based method in [2, Theorem 1] and [3, Theorem 1] for computing an upper bound of the (classical) ℓ_2-gain κ. However, these sufficient conditions yield infeasible LMIs for the SLCS, because both the conditions require the autonomous SLS defined by $\{A_1, A_2\}$ to be quadratically stable, which is not the case. Using the condition in [2, Theorem 2] with the dwell time $d = 1$ (so that its result can be compared), an upper bound $\kappa < 25.3$ is obtained. In comparison, by computing the generating function $G_{1,\gamma}$ at different γ’s, it is found that κ is between 8.11 and 8.12. This accurate estimate of κ relies on Theorem 3.1, since it provides a necessary and sufficient condition for κ. Numerical experiments indicate that, when γ is close to κ, the convergence (or divergence) of $G_{1,\gamma,k}$ requires increasingly larger k to ascertain (this observation is consistent with Remark 4.1). However, for each γ, it is observed that the number of quadratic matrices needed to represent $G_{1,\gamma,k}$ is at most six, even for a very large k. Thus, our algorithms solve a problem of fixed complexity at each iteration. In contrast, when the method in [14] is applied, which can also derive an arbitrarily close estimate of κ, its solution complexity (i.e., the number of LMI constraints) increases very rapidly with the required precision. ◇

7 Conclusion

In this paper, a generalized input-to-state ℓ_2-gain is introduced for the SLCS, and a generating function approach is proposed for analysis and computation of the generalized ℓ_2-gain. It is shown
Examples include analysis and computation of the \(G \)-gain. Effective algorithms are developed for computing the generating function and the \(G \)-gain with proven convergence.

Many interesting issues of the \(G \)-gain of the SLCS remain unsolved and call for further research. Examples include analysis and computation of the \(G \)-gain subject to general system parameter variations (other than scalings of \(A_i \)'s), extended notions and properties of the \(G \)-gain under different switching rules, and input-output \(G \)-gain. The generating function approach developed in this paper will be exploited for tackling these problems.

A Proof of Proposition 3.1

Proof. It follows directly from the definitions (11) and (13) that \(G_{\lambda, \gamma, k}(z) \) is non-decreasing in \(k \) and \(G_{\lambda, \gamma, k}(z) \leq G_{\lambda, \gamma}(z) \). Consider first the case when \(G_{\lambda, \gamma}(z) < \infty \). For any \(\varepsilon > 0 \), there exist \(u_\varepsilon \in U_\lambda \) and a switching sequence \(\sigma_\varepsilon \) such that

\[
G_{\lambda, \gamma}(z) \geq \sum_{t=0}^{\infty} \lambda^t \|x(t; \sigma_\varepsilon, u_\varepsilon, z)\|^2 - \gamma^2 \lambda \sum_{t=0}^{\infty} \lambda^t \|u_\varepsilon(t)\|^2 \geq G_{\lambda, \gamma}(z) - \varepsilon.
\]

Since \(u_\varepsilon \in U_\lambda \) and \(G_{\lambda, \gamma}(z) < \infty \), both summations above converge. Thus, we can find \(k_\varepsilon \in \mathbb{Z}_+ \) large enough such that

\[
\sum_{t=0}^{k_\varepsilon} \lambda^t \|x(t; \sigma_\varepsilon, u_\varepsilon, z)\|^2 - \gamma^2 \lambda \sum_{t=0}^{k_\varepsilon-1} \lambda^t \|u_\varepsilon(t)\|^2 \geq G_{\lambda, \gamma}(z) - 2\varepsilon.
\]

This shows \(G_{\lambda, \gamma, k_\varepsilon}(z) \geq G_{\lambda, \gamma}(z) - 2\varepsilon \); hence \(G_{\lambda, \gamma, k}(z) \uparrow G_{\lambda, \gamma}(z) \) as \(k \to \infty \) as \(\varepsilon > 0 \) is arbitrary.

Consider \(G_{\lambda, \gamma}(z) = \infty \) next. For any \(M > 0 \), there exist \(u_M \in U_\lambda \) and a switching sequence \(\sigma_M \) such that \(\sum_{t=0}^{\infty} \lambda^t \|x(t; \sigma_M, u_M, z)\|^2 - \gamma^2 \lambda \sum_{t=0}^{\infty} \lambda^t \|u_M(t)\|^2 \geq 2M \). If the first summation is finite, it follows from a similar argument as in the first case that there exists \(k_M \in \mathbb{Z}_+ \) such that

\[
G_{\lambda, \gamma, k_M}(z) \geq \sum_{t=0}^{k_M} \lambda^t \|x(t; \sigma_M, u_M, z)\|^2 - \gamma^2 \lambda \sum_{t=0}^{k_M-1} \lambda^t \|u_M(t)\|^2 \geq M.
\]

Otherwise, as \(u_M \in U_\lambda \), the same inequality holds for some \(k_M \) large enough. This shows that \(G_{\lambda, \gamma, k}(z) \uparrow \infty \) as \(k \to \infty \).

B Proof of Proposition 3.2

Proof. Let \(\lambda, \gamma \in \mathbb{R}_+ \) and \(k \in \mathbb{Z}_+ \) be arbitrary.

1) The homogeneity property follows directly from \(x(t; \sigma, \alpha u, \alpha z) = \alpha \cdot x(t; \sigma, u, z) \), \(\forall t \).

2) Partition \(u \in U_k \) as \(u = (v, u') \) for \(v \in \mathbb{R}^m \), \(u' \in U_{k-1} \), and let \(\sigma = (i, \sigma') \) with \(i \in M \). By (13),

\[
G_{\lambda, \gamma, k+1}(z) = \sup_{i, v} \left\{ ||z||^2 - \gamma^2 \lambda ||v||^2 + \lambda \cdot \sup_{\sigma', u'} \left(\sum_{t=0}^{k} \lambda^t ||x(t; \sigma', u', A_i z + B_i v)||^2 - \gamma^2 \lambda \sum_{t=0}^{k-1} \lambda^t ||u'(t)||^2 \right) \right\}
\]

\[
= ||z||^2 + \sup_{i \in M, v \in \mathbb{R}^m} \left(- \gamma^2 \lambda ||v||^2 + \lambda G_{\lambda, \gamma, k}(A_i z + B_i v) \right).
\]

The Bellman equation for \(G_{\lambda, \gamma}(z) \) can be proved similarly.

3) By Proposition 3.1, we need only to prove the monotonicity property for \(G_{\lambda, \gamma, k}(z) \). Monotonicity of \(G_{\lambda, \gamma, k}(z) \) in \(\gamma \) is obvious from (13). We prove its monotonicity in \(\lambda \) by induction. At \(k = 0 \), \(G_{\lambda, \gamma, 0}(z) = ||z||^2 \) is clearly non-decreasing in \(\lambda \). Suppose this is the case for \(G_{\lambda, \gamma, k}(z) \) for some \(k \in \mathbb{Z}_+ \). Then for any \(\lambda > \lambda' \geq 0 \), the Bellman equation and the induction hypothesis imply that

\[
G_{\lambda, \gamma, k+1}(z) \geq ||z||^2 + \lambda' \sup_{i \in M, v \in \mathbb{R}^m} \left(- \gamma^2 ||v||^2 + G_{\lambda', \gamma, k}(A_i z + B_i v) \right) = G_{\lambda', \gamma, k+1}(z).
\]
By induction, $G_{\lambda,\gamma,k}(z)$ is non-decreasing in $\lambda, \forall k \in \mathbb{Z}_+$. \\
4) Denote $u := [u(0)^T \cdots u(k-1)^T]^T \in \mathbb{R}^{nk}$. Define \\
\[f_\sigma(z) := \sup_{u} \left[\sum_{t=0}^{k} \lambda^t \|x(t; \sigma, u, z)\|^2 - \gamma^2 \lambda \sum_{t=0}^{k-1} \lambda^t \|u(t)\|^2 \right] := \sup_{u} \left[z^T \begin{bmatrix} Q_{zz} & Q_{zu} \\ Q_{uz} & Q_{uu} \end{bmatrix} u \right] (34) \]
for some symmetric matrices $Q_{zz} \succeq I_n \in \mathbb{R}^{n \times n}$ and $Q_{uu} \in \mathbb{R}^{nk \times nk}$, and matrices $Q_{zu} = Q_{uz}^T \in \mathbb{R}^{n \times nk}$. Noting that $G_{\lambda,\gamma,k}(z) = \sup_{\sigma} f_\sigma(z)$, for the sub-additivity of $\sqrt{G_{\lambda,\gamma,k}(z)}$, it suffices to show that, for any fixed σ, \\
\[\sqrt{f_\sigma(z_1 + z_2)} \leq \sqrt{f_\sigma(z_1)} + \sqrt{f_\sigma(z_2)}, \forall z_1, z_2 \in \mathbb{R}^n. \]
(35)
Let $\lambda_{\text{max}}(Q_{uu})$ be the largest eigenvalue of Q_{uu}. Consider the following three cases:

a) If $\lambda_{\text{max}}(Q_{uu}) > 0$, then (35) holds as $f_\sigma(z) \equiv \infty$.

b) If $\lambda_{\text{max}}(Q_{uu}) < 0$, then the supremum in (34) is achieved by $u = -Q_{uu}^{-1}Q_{uz}z$; and $\sqrt{f_\sigma(z)} = \left(z^T (Q_{zz} - Q_{zu}Q_{uu}^{-1}Q_{uz})z \right)^{1/2}$ with $Q_{zz} - Q_{zu}Q_{uu}^{-1}Q_{uz} > 0$ is a norm hence satisfies (35).

c) If $\lambda_{\text{max}}(Q_{uu}) = 0$, then the null space $N(Q_{uu}) \neq \{0\}$. If $Q_{uz}z \notin R(Q_{uu}) = N(Q_{uu})^\perp$, there exists $u_1 \in N(Q_{uu})$ with $u_1^T Q_{uz}z > 0$. By letting $u = \alpha u_1$ for arbitrarily large $\alpha > 0$, we obtain that $f_\sigma(z) = \infty$. If $Q_{uz}z \in R(Q_{uu})$, i.e., $Q_{uz}z = Q_{uu}u_0$ for some $u_0 \in \mathbb{R}^{nk}$, then
\[f_\sigma(z) = \sup_{u} \left(Q_{zz} - 2u^T Q_{uu}u_0 + u^T Q_{uu}u \right) = z^T (Q_{zz} - Q_{zu}Q_{uu}^{-1}Q_{uz})z < \infty. \]

Here, Q_{uu}^{-1} denotes the Moore-Penrose pseudo inverse of Q_{uu}, and $Q_{zz} - Q_{zu}Q_{uu}^{-1}Q_{uz} > 0$ as $Q_{zz} > 0$ and $Q_{uu} \preceq 0$. To sum up, $\sqrt{f_\sigma(z)}$ defines a norm on the subspace $Q_{uu}^{-1} [R(Q_{uu})]$, and is infinite everywhere else. As a result, (35) still holds.

This proves (35), hence the sub-additivity of $\sqrt{G_{\lambda,\gamma,k}(\cdot)}$ and $\sqrt{G_{\lambda,\gamma}(\cdot)}$ by Proposition 3.1.

5) The convexity is a direct consequence of the sub-additivity and homogeneity properties.

6) That $G_{\lambda,\gamma}$ is a subspace follows from the sub-additivity property of $\sqrt{G_{\lambda,\gamma}(\cdot)}$. Its invariance to subsystem dynamics follows from the Bellman equation (16).

7) By setting $u = 0$, the right hand side of (11) reduces to the definition (10). \hfill \Box

C \quad Proof of Proposition 3.7

Proof. Statement 1) follows directly from the definition of the DOC and Proposition 3.6.

For Statement 2), we first show that on Ω, $g_{\lambda,\gamma}$ is continuous in each of the two variables when the other is fixed. For example, let $\gamma \in \mathbb{R}_+$ be fixed and let $\lambda_r := \sup \{ \lambda \mid (\lambda, \gamma) \in \Omega \}$. We show that the function $h(\lambda) := g_{\lambda,\gamma}$ is continuous on $[0, \lambda_r]$ as follow. By Proposition 3.4, $h(\lambda)$ is convex and finite on $[0, \lambda_r]$, which implies its continuity on the open interval $(0, \lambda_r)$. The continuity of $h(\lambda)$ at λ_r follows from its being monotonically non-decreasing and lower semicontinuous. At $\lambda = 0$,
\[h(0) \leq \lim \inf_{\lambda \downarrow 0} h(\lambda) = \lim_{\lambda \downarrow 0} h(\lambda) := \eta \]
by the monotonicity of h. It is noted that the strict inequality $h(0) < \eta$ is impossible since otherwise, it follow from the monotonicity and continuity of h on the open interval $(0, \varepsilon)$ for a small $\varepsilon > 0$ that for any $z \in (0, \varepsilon)$, $h(z) \geq \eta$ and the line segment joining the points $(0, h(0))$ and $(z, h(z))$ would be below the point $(z', h(z')) \in \mathbb{R}^2_+$ for some $z' > 0$ sufficiently close to 0. This contradicts the convexity of h. Thus, $h(\cdot)$ is continuous at $\lambda = 0$. Similarly, we can show that $g_{\lambda,\gamma}$ is continuous in γ^γ (hence in γ) for a fixed λ whenever $(\lambda, \gamma) \in \Omega$.

Now let $(\lambda', \gamma') \in \Omega$ be arbitrary, and let $((\lambda_n, \gamma_n))$ be a sequence in Ω converging to (λ', γ'). Due to the lower semicontinuity of $g_{\lambda,\gamma}$, we have $g_{\lambda',\gamma'} \leq \lim \inf_{\lambda \to \infty} g_{\lambda_n,\gamma_n}$. For any $\varepsilon > 0$ small
enough such that \((\lambda', \gamma' - \varepsilon) \in \Omega^0, \gamma_s \geq \gamma' - \varepsilon\) for all \(s\) sufficiently large. Thus, by the monotonicity property of \(g_{\lambda, \gamma}\), \(\limsup_{s \to \infty} g_{\lambda, \gamma_s} \leq \limsup_{s \to \infty} g_{\lambda, \gamma' - \varepsilon} = g_{\lambda', \gamma' - \varepsilon}\), where the equality follows from the continuity of \(g_{\lambda, \gamma'}\) in \(\lambda\). Since \(\varepsilon > 0\) is arbitrary, \(g_{\lambda, \gamma'}\) is arbitrarily close to \(g_{\lambda', \gamma'}\) due to the continuity of \(g_{\lambda, \gamma}\) in \(\gamma\). This shows \(\limsup_{s \to \infty} g_{\lambda, \gamma_s} \leq g_{\lambda', \gamma'}\), hence \(\lim_{s \to \infty} g_{\lambda, \gamma_s} = g_{\lambda', \gamma'}\).

To prove Statement 3), recall that for a given \(\gamma \in \mathbb{R}_+\), \([0, \lambda_r] \times \{\gamma\}\) is a maximal horizontal line segment contained in \(\Omega\). Assume without loss of generality that \(\lambda_r > 0\). Since \(g_{\lambda, \gamma}\) is convex in \(\lambda\) (see Proposition 3.4), the function \((g_{\lambda, \gamma} - g_{0, \gamma})/\lambda\) is non-decreasing in \(\lambda\) on \([0, \lambda_r]\). Thus, to show that \(g_{\lambda, \gamma}\) is strictly increasing on \([0, A_0]\), it suffices to show that \(g_{\epsilon, \gamma} > g_{0, \gamma} = 1\) for all \(\epsilon > 0\) small enough. Assume \(A_{i_0} \neq 0\) for some \(i_0 \in \mathcal{M}\). Then there exists \(z_0 \in \mathbb{S}^{n-1}\) such that \(A_{i_0} z_0 \neq 0\). By setting \(z = z_0, u = 0,\) and \(\sigma = (i_0, i_0, \ldots)\) in (11), we have \(G_{\epsilon, \gamma}(z_0) \geq \|z_0\|^2 + \varepsilon\|A_{i_0} z_0\|^2 + \cdots > 1\); hence \(g_{\epsilon, \gamma} > 1\). This completes the proof of Statement 3).

\(\Box\)

D Proof of Proposition 4.1

Proof. Case (1): If \(a = 0\), then the conclusions follow directly from the fact that (23) is reduced to

\[
g_{k+1} = F_{a,b}(g_k) = \begin{cases} 1 & \text{if } \gamma^2 \geq b^2 \lambda g_k \\ \infty & \text{if } \gamma^2 < b^2 \lambda g_k. \end{cases}
\]

Case (2): If \(a \neq 0\) and \(b = 0\), then (23) implies \(g_{k+1} = F_{a,b}(g_k) = 1 + a^2 \lambda g_k\), which converges to a finite value \(1/(1 - a^2 \lambda)\) if and only if \(a^2 \lambda < 1\).

Case (3): If \(a \neq 0\) and \(b \neq 0\), then (23) can be written as

\[
g_{k+1} = F_{a,b}(g_k) = \begin{cases} 1 + \frac{a^2 \lambda \gamma^2 g_k}{\gamma^2 - b^2 g_k} & \text{if } g_k < \frac{\gamma^2}{b^2} \\ \infty & \text{if } g_k \geq \frac{\gamma^2}{b^2}. \end{cases}
\]

For the conclusion on \(\Omega_+\), we only need to show that the iteration (36) converges if and only if

\[
\gamma > |b| \quad \text{and} \quad 0 < \lambda \leq (\gamma - |b|)^2/(a^2 \gamma^2). \tag{37}
\]

For the necessity of (37), suppose \((g_k)\) converges to \(g_\infty < \infty\). Then we must have \(\gamma > |b|\) for otherwise \(g_1 = \infty\). In addition, \(g_\infty\) must be a positive solution to the equation

\[
g_\infty = 1 + \frac{a^2 \lambda \gamma^2 g_\infty}{\gamma^2 - b^2 g_\infty} \iff b^2 g_\infty^2 - (b^2 + \gamma^2 - a^2 \lambda \gamma^2) g_\infty + \gamma^2 = 0. \tag{38}
\]

This is possible only if \(b^2 + \gamma^2 - a^2 \lambda \gamma^2 \geq 0\) and \((b^2 + \gamma^2 - a^2 \lambda \gamma^2)^2 \geq 4b^2 \gamma^2\). These imply \(a^2 \lambda \gamma^2 \leq (|b| - \gamma)^2\), i.e., the second part of condition (37). (Here \(\lambda > 0\) is by assumption.)

To show the sufficiency of condition (37), we first prove the following claim under (37) by induction: the monotone sequence \((g_k)\) generated by the iteration (36) is bounded, i.e., \(g_k \leq \gamma/|b|, \forall k\). Clearly, the claim is trivially true for \(k = 0\) as \(g_0 = 1\) and \(\gamma/|b| > 1\) by (37). Suppose it holds for some \(k \in \mathbb{Z}_+, i.e., g_k \leq \gamma/|b|\). Then it follows from (37) that \((\gamma - |b|) \gamma \geq (\gamma - |b|)|b| + a^2 \lambda \gamma^2\) implies \((\gamma/|b| - 1)^2 \gamma^2 \geq \frac{\gamma^2}{|b|^2} - (b^2 + a^2 \lambda \gamma^2) g_k\), which further implies \(\gamma/|b| \geq 1 + \frac{a^2 \lambda \gamma^2 g_k}{b^2 + a^2 \lambda \gamma^2} = g_{k+1}\). Note that in the last step, we use the fact that \(\gamma^2 - b^2 g_k > 0\), which follows from \(g_k \leq \gamma/|b| < \gamma^2/b^2\). This proves the claim. As a result, \((g_k)\) converges (to some \(g_\infty < r/|b|\)). Finally, suppose \((\lambda, \gamma)\) satisfies condition (37). Then the limit \(g_\infty\) (i.e., \(g_{\lambda, \gamma}\) of \((g_k)\)) is the smallest positive root of equation (38), which is exactly given by (25).

\(\Box\)
E Proof of Proposition 5.1

Proof. 1) We prove this by induction on k. The case $k = 0$ is trivial as $H_0 = \{ I \}$ and $G_{\lambda,\gamma,0}(z) = \| z \|^2$. Suppose $G_{\lambda,\gamma,j}(z) = \max_{P \in H_j} z^T P z$ for $j = 0, 1, \ldots, k - 1$. By (15), we have

$$G_{\lambda,\gamma,k}(z) = \| z \|^2 + \sup_{i \in \mathcal{M}, v \in \mathbb{R}^m} \left[-\lambda \gamma^2 \| v \|^2 + \lambda \cdot G_{\lambda,\gamma,k-1}(A_i z + B_i v) \right]$$

$$= \sup_{i \in \mathcal{M}, v \in \mathbb{R}^m, P \in H_{k-1}} \left[\| z \|^2 - \lambda \gamma^2 \| v \|^2 + \lambda \cdot (A_i z + B_i v)^T P (A_i z + B_i v) \right]$$

$$= \sup_{i \in \mathcal{M}, P \in H_k} z^T \rho_{\lambda,\gamma,i}(P) z = \sup_{P \in H_k} z^T P' z, \quad \forall z \in \mathbb{R}^n.$$

Note that in deriving the last two equalities, we choose the (z-dependent) optimal switching and control as

$$\left(\tilde{i}_*, P_*^k \right) := \arg \max_{i \in \mathcal{M}, P \in H_{k-1}} \left[z^T \rho_{\lambda,\gamma,i}(P) z \right], \quad v_*^k := \left(\gamma^2 I - B_{i*}^T P_*^k B_{i*} \right)^{-1} B_{i*}^T P_*^k A_{i*} z. \quad (39)$$

The desired result then follows from the induction principle.

2) Since $(\lambda, \gamma) \in \mathcal{W}$, there exists a small $\varepsilon > 0$ such that $(\gamma - \varepsilon) > 0$ and $G_{\lambda,\gamma}(B_i v) \leq (\gamma - \varepsilon)^2$, $\forall v \in S^{m-1}, i \in \mathcal{M}$. Define the finite constant $K_v := \varepsilon^{-1} \cdot \max_{i \in \mathcal{M}} \sup_{z \in S^{m-1}} \sqrt{G_{\lambda,\gamma}(A_i z)}$. Then for any $z \in \mathbb{R}^n$ and $i \in \mathcal{M}$, whenever $v \notin \mathcal{V}_z := \{ v \in \mathbb{R}^m | \| v \| \leq K_v \| z \| \}$,

$$-\gamma^2 \| v \|^2 + G_{\lambda,\gamma}(A_i z + B_i v) \leq -\gamma^2 \| v \|^2 + \left(\sqrt{G_{\lambda,\gamma}(A_i z)} + \sqrt{G_{\lambda,\gamma}(B_i v)} \right)^2$$

$$\leq -\gamma^2 \| v \|^2 + (\varepsilon K_v \| z \| + (\gamma - \varepsilon) \| v \|)^2 < 0,$$

where the sub-additivity of $\sqrt{G_{\lambda,\gamma}(\cdot)}$ is used in the first step. Thus, the supremum in the Bellman equation (16) cannot be achieved by v outside \mathcal{V}_z. As $G_{\lambda,\gamma}(\cdot)$ is continuous and \mathcal{V}_z is compact, the supremum must be achieved by some $v_*(z) \in \mathcal{V}_z$ and some $i \in \mathcal{M}$. The homogeneity of $i_*(z)$ and $v_*(z)$ along rays follows immediately by noting that equation (16) is positive homogeneous of degree two in z and v.

3) This follows by replacing $G_{\lambda,\gamma}$ with $G_{\lambda,\gamma,k}$ in the above proof of Statement 2).

F Proof of Proposition 5.2

Proof. For notational simplicity, we denote $\tilde{\mathcal{V}}(\cdot; \sigma_*, z, u_*, z, z)$ by $\tilde{\mathcal{V}}(\cdot)$ when necessary in this proof.

1) Note that (31) holds. Since $(\lambda, \gamma) \in \Omega^o$, we can find a small $\varepsilon > 0$ such that $(\lambda, \gamma - \varepsilon) \in \Omega^o$. By applying the inequality (32) and then comparing it with (31), we have, for each $k \in \mathbb{Z}_+$,

$$G_{\lambda,\gamma-\varepsilon}(z) \geq \sum_{t=0}^{k} \lambda^t \left[\| \tilde{\mathcal{V}}(t) \|^2 - (\gamma - \varepsilon)^2 \lambda \| u_*(t) \|^2 \right] + \lambda^{k+1} \cdot G_{\lambda,\gamma}(\tilde{\mathcal{V}}(k + 1))$$

$$= G_{\lambda,\gamma}(z) + \varepsilon (2 \gamma - \varepsilon) \lambda \cdot \sum_{t=0}^{k} \lambda^t \| u_*(t) \|^2. \quad (40)$$

We conclude that $u_*, z \in \mathcal{U}_\lambda$, for otherwise the right hand side of the above inequality tends to infinity as $k \rightarrow \infty$, contradicting the fact that $G_{\lambda,\gamma-\varepsilon}(z)$ is finite due to $(\lambda, \gamma - \varepsilon) \in \Omega^o$.

2) Applying (31) and the fact that $u_*, z \in \mathcal{U}_\lambda$, we have, for each $k \in \mathbb{Z}_+$,

$$\sum_{t=0}^{k} \lambda^t \| \tilde{\mathcal{V}}(t) \|^2 \leq G_{\lambda,\gamma}(z) + \gamma^2 \lambda \sum_{t=0}^{k} \lambda^t \| u_*(t) \|^2 \leq G_{\lambda,\gamma}(z) + \gamma^2 \lambda \sum_{t=0}^{\infty} \lambda^t \| u_*(t) \|^2 < \infty.$$
Hence, \(\sum_{t=0}^{\infty} \lambda^t \| \hat{x}(t) \|^2 < \infty \), which implies \(\lim_{t \to \infty} \sqrt{\lambda^t} \cdot \hat{x}(t) = 0 \). By letting \(k \to \infty \) in (31) and noting that \(\lambda^{k+1} G_{\lambda, \gamma}(\hat{x}(k+1)) \leq g_{\lambda, \gamma} \cdot \lambda^{k+1} \| \hat{x}(k+1) \|^2 \to 0 \), we obtain the second result.

3) Fix a sufficiently small \(\varepsilon > 0 \) such that \((\lambda, \gamma - \varepsilon) \in \Omega^\ast \). For any \(z \in S^{n-1} \) and associated Bellman sequence \((\sigma_{\ast}, u_{\ast}, z)\), the inequality (40) holds, which implies that

\[
\sum_{t=0}^{\infty} \lambda^t \| u_{\ast}(t) \|^2 \leq \frac{G_{\lambda, \gamma - \varepsilon}(z) - G_{\lambda, \gamma}(z)}{\varepsilon(2\gamma - \varepsilon)\lambda} \leq M_u := \frac{g_{\lambda, \gamma - \varepsilon}}{\varepsilon(2\gamma - \varepsilon)\lambda}.
\]

This, together with the results in Statement 2), implies that for each \(z \in S^{n-1} \),

\[
\left\| \sqrt{\lambda^t} \cdot \hat{x}(t) \right\|^2 \leq \sum_{t=0}^{\infty} \lambda^t \| \hat{x}(t) \|^2 \leq g_{\lambda, \gamma} + \gamma^2 \lambda M_u, \quad \forall \ t \in \mathbb{Z}_+,
\]

where the upper bound is a constant independent of \(z \in S^{n-1} \) and the associated \((\sigma_{\ast}, u_{\ast}, z)\).

4) As \(\sqrt{\lambda^t} \cdot \hat{x}(t; \sigma_{\ast}, u_{\ast}, z) \) is homogeneous in \(z \), the asymptotic stability follows directly from the convergence property in Statement 2) and the uniform boundedness property in Statement 3), regardless of \(z \) and \((\sigma_{\ast}, u_{\ast}, z)\).

\(\Box \)

G Proof of Theorem 5.1

Proof. Fix \((\lambda, \gamma) \in \Omega^\ast \). Motivated by [22, Theorem 3], we first show that the closed-loop system under any \((\sigma_{\ast}, u_{\ast})\) is (strongly) uniformly asymptotically stable at the origin, i.e., for any given constants \(\delta > 0 \) and \(c \in (0, 1) \), there exists \(T_{\delta, c} \in \mathbb{Z}_+ \) such that \(\| \sqrt{\lambda^t} \cdot \hat{x}(t; \sigma_{\ast}, u_{\ast}, z) \| \leq c\delta, \quad \forall \ t \geq T_{\delta, c} \) under any \((\sigma_{\ast}, u_{\ast})\), whenever \(\| z \| \leq \delta \). We prove this assertion by contradiction. Suppose it fails for some given \(\delta > 0 \) and \(c \in (0, 1) \). Then there exist a sequence of initial states \((z_k)\) with \(\| z_k \| \leq \delta \) for each \(k \), a sequence of corresponding Bellman switching-control sequences \((\sigma_{\ast}, u_{\ast}, z_k)\), and a strictly increasing sequence of times \((t_k)\) with \(\lim_{k \to \infty} t_k = \infty \) such that \(\| \sqrt{\lambda^{t_k}} \cdot \hat{x}(t; \sigma_{\ast}, u_{\ast}, z_k) \| > c\delta \) for all \(k \in \mathbb{Z}_+ \). By Proposition 5.2, there exist two constants \(\rho \geq \delta \) and \(\mu \in (0, \delta) \) satisfying the following two conditions:

1. \(\| \sqrt{\lambda^t} \cdot \hat{x}(t; \sigma_{\ast}, u_{\ast}, z_k) \| \leq \rho, \quad \forall \ t \in \mathbb{Z}_+, \forall \ k; \)
2. \(\| \sqrt{\lambda^t} \cdot \hat{x}(t; \sigma_{\ast}, u_{\ast}, z_k) \| \leq c\delta, \quad \forall \ t \in \mathbb{Z}_+ \) under any \((\sigma_{\ast}, u_{\ast})\), whenever \(\| z \| < \mu \).

The condition (ii) implies that for each \(k \), \(\| \sqrt{\lambda^t} \cdot \hat{x}(t; \sigma_{\ast}, u_{\ast}, z_k) \| \geq \mu \) for \(t = 0, 1, \ldots, t_k \). Since \(\mu \leq \| z_k \| \leq \delta \) for each \(k \), a subsequence of \((z_k)\), which we assume without loss of generality to be \((z_k)\) itself, converges to some \(z_c \) satisfying \(\mu \leq \| z_c \| \leq \delta \). Since the index set \(\mathcal{M} \) is finite, there also exist a subsequence of \((z_k)\), which is again assumed to be \((z_k)\) itself, and \(j_0 \in \mathcal{M} \) such that

\[
G_{\lambda, \gamma}(z_k) = \| z_k \|^2 - \lambda \cdot \gamma^2 \| u_{\ast}(0) \|^2 + \lambda \cdot G_{\lambda, \gamma}(A_{j_0} z_k + B_{j_0} u_{\ast}(0)), \quad \forall \ k.
\]

(41)

It follows from Statement 2) of Proposition 5.1 that the sequence \((u_{\ast}(0))\) is bounded; hence there exists a subsequence of it, assumed to be \((u_{\ast}(0))\) itself without loss of generality, that converges to some \(u_{\ast}(0) \in \mathbb{R}^m \). By letting \(k \to \infty \) in (41) and noting the continuity of \(G_{\lambda, \gamma}(\cdot) \), we obtain

\[
G_{\lambda, \gamma}(z_c) = \| z_c \|^2 - \lambda \cdot \gamma^2 \| u_{\ast}(0) \|^2 + \lambda \cdot G_{\lambda, \gamma}(A_{j_0} z_c + B_{j_0} u_{\ast}(0)).
\]

In other words, \((j_0, u_{\ast}(0))\) achieves the supremum in the Bellman equation (16) for \(z_c \). Based on condition (ii) and the construction of \((t_k)\), we must have \(\| \sqrt{\lambda} \cdot \hat{x}(1; \sigma_{\ast}, u_{\ast}, z_k) \| \geq \mu \) for each \(k \geq 1 \). Letting \(k \to \infty \), this shows that \(\hat{x}_c(1) := A_{j_0} z_c + B_{j_0} u_{\ast}(0) \) satisfies \(\| \sqrt{\lambda} \cdot \hat{x}_c(1) \| \geq \mu \).
By condition (i), for a fixed \(t \geq 1 \), any subsequence of \((\sqrt{\lambda^*} \cdot \hat{x}(t; \sigma, z_k, u, z_k)) \) has a convergent subsequence. Using this result and Statement 2) of Proposition 5.1 (to bound the corresponding \((u, z_k(t))\) at each fixed \(t \geq 1 \) and repeating a similar argument for \(t = 0 \) as above, we obtain via induction a switching sequence \(\sigma = (j_0, j_1, \ldots) \) and a control sequence \(v = (v_1(0), v_1(1), \ldots) \) such that: (i) \((\sigma, v) \) is a Bellman switching-control sequence for the initial state \(z_1 \); and (ii) the resulting state trajectory \(\hat{x}*(t) \), which starts from \(\hat{x}(1) = z_1 \) and is recursively defined by \(\hat{x}(t+1) = A_{\sigma,1}(t) \hat{x}(t) + B_{\sigma,1}(t) v(t) \), \(t \in \mathbb{Z}_+ \), satisfies \(||\sqrt{\lambda^*} \cdot \hat{x}(t)|| \geq \mu \) for each \(t \in \mathbb{Z}_+ \). However, this contradicts the convergence property in Statement 2) of Proposition 5.2. Consequently, the uniform asymptotic stability holds.

Having proved the uniform asymptotic stability, by using the homogeneity of \(\sqrt{\lambda^*} \cdot \hat{x}(t; \sigma, z_k, u, z_k) \) in \(z \) and employing a similar argument in [13, Theorem 4.11], we can easily establish the (strong) exponential stability at the origin.

\[\square \]

References

