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Overview

Inter ior-point methods in mathem atical progr amming hav e
been the largest and most dram atic area of resear ch in
optimization since the de velopment of the simplex method : : :
Inter ior-point methods hav e per manently changed the
landsca pe of mathem atical progr amming theor y, practice and
computation : : : (Freund & Mizuno 1996).

Major impacts on

The linear progr amming problem (LP)

The quadr atic progr amming problem (QP)

The linear complementar ity problem (LCP)

The semi-de�nite progr amming problem (SDP)

Some classes of con vex progr amming problems
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The linear programming problem

min
x

cT x s.t. Ax = b; x ≥ 0:

Dantzig (1947-1951): the simplex method
– good practical perf ormance
– exponential worst case complexity (Klee and Minty (1972))

Question: Is (LP) solva ble in polynomial time?
(in ter ms of: L = bitlength of data, and n = dim (x))

Answer: YES!Khach yan 1979.

Proof: The ellipsoid method (an inter ior point method)
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Complexity

Khach yan (1979–1980): the ellipsoid method
– iteration complexity: O(n2L )
– computational complexity: O(n4L )
Note: Bad practical perf ormance.
Obser ved complexity same as worst case complexity .

Karmarkar (1984): projectiv e scaling
– iteration complexity: O(nL )
– computational complexity: O(n3:5L )
Note: A var iant of the algor ithm implemented in KORBX(1989).
Practical perf ormance better than theor etical complexity .

State of the Art:
– iteration complexity: O(

√
nL )

– computational complexity: O(n3L )

(Anstreicher (1999) O( n 3

log n L ))
Note: Excellent softw are pac kages: CPLEX,LOQO , Mosek, OSL,PCx
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How is polynomiality proved?

Primal-dual algorithms:
Obtain a sequence of points with duality ga p � k → 0.
Best complexity is obtained for path-f ollowing methods where (� k ) is
Q-linear ly con vergent with Q-factor (1 − � =

p
(n)) :

� k +1 ≤ (1 − � =
√

n) � k ; k = 0; 1; : : :

or for potential reduction method where (� k ) is R-linearly con vergent
with R-factor (1 − 
 =

√
n):

� k ≤ � (1 − � =
√

n)k ; k = 0; 1; : : :

In both cases we hav e

� k ≤ � f or k = O(
√

n log(
� 0

�
))

If � ≤ 2� 2L then (xk ; yk ; sk ) can be rounded to an exact solution in O(n3)
ar ithmetic oper ations . Hence the O(

√
nL )-iteration complexity .
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Superlinear convergence

Polynomiality is proved by showing that � k con verges linear ly. Ef�cient
algor ithms hav e super linear con vergence:

� k +1 ≤ � k � k ; k = 0; 1; : : : ; � k → 0

Q-quadr atic con vergence : � k +1 ≤ � � 2
k

super linear con vergence of Q-or der ! : � k +1 ≤ � � !
k

Zhang, Ta pia and Dennis (1992): suf�cient conditions for super linear
con vergence for path-f ollowing methods for LP;

Zhang, Ta pia and P. (1993): gener alization for QP and LCP;

Ye, Güler, Ta pia and Zhang (1993): The Mizuno-Todd-Y e
predictor -corr ector method has O(

√
nL ) complexity and

Q-quadr atic con vergence under gener al conditions;

Ye and Anstreicher (1993): gener alization for LCP under strict
complementar ity.
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Benefits of superlinear convergence

Con vergence is faster than indicated by worst case complexity .

The condition of the linear systems to be solved at each iteration
worsens as � k decr eases. Superlinear ly con vergent algor ithms need
only a couple of iterations with small � k .

Superlinear con vergence vs. �nite ter mination
Mehr otra and Ye (1993): if � k is small enough then a projection can be
used to �nd the exact solution. Does super linear con vergence set in
(much) bef ore such a projection works?

Superlinear con vergence is even mor e impor tant for SDPsince:

no analogous of simplex

inter ior point methods – the only ef�cient solvers

no �nite ter mination schemes

condition of linear systems is mor e cr itical
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Convergence of the iterates

� k → 0 . Is the sequence of iterates con vergent?

Ta pia, Zhang and Ye (1995): suf�cient conditions for con vergence of
iterates . Can the y be satis�ed with preservation of polynomial
complexity?

Gonzag a and Ta pia (1997): the iterates of MTYcon verge to the
analytic center of the solution set.
MTY: 2 matr ix factor izations + 2 bac ksolves, Q(� k ) = 2.
simpli�ed MTY: asymptotically one factor ization + 2 bac ksolves;
the iterates con verge but not to the analytic center .

Bonnans and Gonzag a (1996) Bonnans and P. (1997): Gener al
Con vergence Theory

P. (2001): esta blished super linear con vergence of the iterates for
several inter ior point methods .
The simpli�ed MTYis Q-quadr atically con vergent.
MTYa ppear s not to be Q-super linear ly con vergent.

Inter ior Point Methods – p.8/30



UMBCUMBCUMBC J � I

Convergence of the iterates

� k → 0 . Is the sequence of iterates con vergent?

Ta pia, Zhang and Ye (1995): suf�cient conditions for con vergence of
iterates . Can the y be satis�ed with preservation of polynomial
complexity?

Gonzag a and Ta pia (1997): the iterates of MTYcon verge to the
analytic center of the solution set.
MTY: 2 matr ix factor izations + 2 bac ksolves, Q(� k ) = 2.
simpli�ed MTY: asymptotically one factor ization + 2 bac ksolves;
the iterates con verge but not to the analytic center .

Bonnans and Gonzag a (1996) Bonnans and P. (1997): Gener al
Con vergence Theory

P. (2001): esta blished super linear con vergence of the iterates for
several inter ior point methods .
The simpli�ed MTYis Q-quadr atically con vergent.
MTYa ppear s not to be Q-super linear ly con vergent.

Inter ior Point Methods – p.8/30



UMBCUMBCUMBC J � I

Worst case vs. probabilistic analysis

The simplex method has exponential worst case complexity but has
good practical perf ormance. Why?

The expected number of pivots is O(n2) !

(Adler , Borgw ardt, Megiddo, Shamir, Smale, Todd; See Shamir(1992))
Thisis a strongly polynomial proba bilistic complexity result

(no dependence on L ).

Are ther e corr esponding results for inter ior point methods?

Antr eicher , Ji, P. and Ye (1999): The expected value of the number of
iterations needed for an infeasible start inter ior point method of MTY
type to �nd an exact solution of the LPor to deter mine that the LPis

infeasible is at most O(
√

n ln n) !

Numer ical exper ience with a very large number of problems show that
inter ior point methods need 30–50 iterations to con vergence. Can the
a bo ve proba bilistic results be impr oved?
Polylog proba bilistic complexity?
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Wide neighborhoods of the central path

Primal-dual path-f ollowing algor ithms acting in wide neighborhoods of
the centr al path are the most ef�cient inter ior point methods .
Parado xically the best complexity results were obtained for algor ithms
acting in narrow neighborhoods .
Recent work closes this ga p (P., Math. Prog. 2003).

The hor izontal linear complementar ity problem (HLCP)

xs = 0

Qx + Rs = b

x; s ≥ 0:

HLCP is monotone iff Qu + Rv = 0⇒ uT v ≥ 0; ∀u; v ∈ IRn :

HLCP is skew-symmetr ic iff Qu + Rv = 0⇒ uT v = 0; ∀u; v ∈ IRn :

QP reduces to a monotone HLPC. LPreduces to a skew-symmetr ic HLCP.

Inter ior Point Methods – p.10/30
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The Central Path

The set of all feasible points is denoted by

F = {z = d x; s c ∈ IR2n
+ : Qx + Rs = b};

where d x; s c denotes the vector [xT ; sT ]T . If the relativ e inter ior of F ,

F0 = F
\

IR2n
++

is not empty , then the nonlinear system,

F� (z) :=

2

4 xs − � e

Qx + Rs− b

3

5 = 0 :

has a unique positiv e solution for an y � > 0. The set of all such solutions
de�nes the centr al path C of the HLCP, i.e.,

C = {z ∈ IR2n
++ : F� (z) = 0; � > 0} :

Inter ior Point Methods – p.11/30
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Central Path Neighborhoods

Proximity measur es:

� 2(z) :=










xs
� (z)

− e










2

; � 1 (z) :=










xs
� (z)

− e










1

;

� �
1 (z) :=












�
xs

� (z)
− e

� �











1

; � (z) =
xT s
n

:

Corresponding neighborhoods:

N2(� ) = {z ∈ F0 : � 2(z) ≤ � } ;

N1 (� ) = {z ∈ F0 : � 1 (z) ≤ � } ;

N �
1 (� ) = {z ∈ F0 : � �

1 (z) ≤ � } :

Relation betw een neighborhoods:

N2(� ) ⊂ N1 (� ) ⊂ N �
1 (� ); and lim

� " 1
N �

1 (� ) = F :
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First order predictor

Input: z ∈ D(� ) = {z ∈ F0 : xs ≥ � � (z) } = N �
1 (1 − � ).

z(� ) = z + � w ;

where

w = d u; v c = −F 0
0(z)� 1F0(z)

is the Newton direction of F0 at z (the af �ne scaling direction), i.e.,

su + xv = −xs

Qu + Rv = 0 :


 :=
2 (1 − � )

2(1− � ) + n +
p

4(1− � )( n + 1) + n2
;

� = argmin {� (� ) : z(� ) ∈ D((1 − 
 )� ) } ;

Output: z = z(� ) ∈ D((1 − 
 )� ) :
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First order corrector

Input: z ∈ D((1 − 
 )� ).

z(� ) = z + � w ;

where

w = d x; s c = −F 0
� (z)(z)� 1F� (z)(z) ;

is the center ing direction at z, i.e.,

su + xv = � (z) − xs

Qu + Rv = 0 :

Output: z+ = z(� +) ∈ D(� ).

First order predictor –corrector .
Input: z ∈ D(� ), Output: z+ ∈ D(� ).

Itera tive algor ithm: Given z0 ∈ D(� ).
For k = 0; 1; : : :: z← zk ; zk +1 ← z+ ; � k +1 ← � (z+) ; k ← k + 1.
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UMBCUMBCUMBC J � I

Convergence results

Theorem If HLCP is monotone then the algor ithm is well de�ned and

� k +1 ≤
 

1− 29
p

(1 − � )�
16(n + 2)

!

� k ; ; k = 0; 1; : : :

Corollar y O(nL )-iteration complexity .
Theorem If the HLCP has a strictly complementar y solution, then the
sequence {� k } gener ated by Algor ithm 1 con verges quadr atically to
zero in the sense that

� k +1 = O(� 2
k ) :

Comments: Same complexity as Gonzag a (1999) plus quadr atic con-
vergence. In Gonzag a' s algor ithm a predictor is followed by an a pr iori
unkno wn number of corr ector s. The complexity result is proved by show-
ing that the total number of corr ector s is at most O(nL ). The structur e
of Gonzag a' s algor ithm makes it very dif�cult to analyze the asymptotic
con vergence proper ties of the duality ga p. No super linear con vergence
results hav e been obtained so far for his method.
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A higher order predictor

Input: z ∈ D(� ).

z(� ) = z +
mX

i =1

wi � i ;

where wi = d ui ; vi c are given by
8
<

:
su1 + xv1 = −xs

Qu1 + Rv1 = 0
;

8
<

:
sui + xv i = −P i � 1

j =1 uj vi � j

Qui + Rvi = 0
; i = 2; 3; : : : ; m

(one factor ization + m bac ksolves ,O(n3) + m O(n2) ar ith. oper ations)

� = argmin {� (� ) : z(� ) ∈ D((1 − 
 )� ) } :

Output: z = z(� ) ∈ D((1 − 
 )� ) :
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The higher order predictor corrector

Given z0 ∈ D(� ).
For k = 0; 1; : : ::
z← zk ;

Obtain z by the higher order predictor;
Obtain z+ by the �r st order corr ector;

zk +1 ← z+ ; � k +1 ← � (z+) ; k ← k + 1.

Theorem If HCLP is monotone then the algor ithm is well de�ned and

� k +1 ≤
 

1− :16

√
� 3

p
1− � )√

n m +1
√

n + 2

!

� k ; k = 0; 1; : : :

Corollar y O
�

n1=2+1=(m +1)L
�

-iteration complexity .

Corollar y If m = O(d(n + 2)! − 1e), then O (
√

nL ) -iteration complexity .

lim n(1=n ! ) = 1; n(1=n ! ) ≤ e1=(! e); ∀n.
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The higher order predictor corrector – continued

Theorem We hav e

� k +1 = O(� m +1
k ) ; if HLCP is nondegener ate ;

and

� k +1 = O(� (m +1)=2
k ) ; if HLCP is degener ate :

Conc lusion The �r st algor ithm with O (
√

nL ) -iteration complexity and
super linear con vergence for degener ate LCP in the wide neighborhood
of the centr al path.

Remar k If we tak e ! = 0:1 then the values of m = d(n + 2)! − 1e,
corr esponding to n = 106, n = 107, n = 108, and n = 109 are 3, 5, 6, and 7
respectiv ely. Thiscorr esponds with ef�cient practical implementation of
inter ior point methods where the same factor ization is used from 3 to 7
times .
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Semidefinite programming (SDP)

(Primal)

minimize C • X

subject to A i • X = bi ; i = 1; : : : ; m; X � 0:

(Dual)

maximize bT y

subject to
mX

i =1

yi A i + S = C; S � 0:

da ta: C; A i ; –n × n symmetr ic matr ices; b = (b1; : : : ; bm )T ∈ Rm .
pr imal var iable: X , symmetr ic & p.s.d.
dual var iables: y ∈ Rm , S, symmetr ic & p.s.d.
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SDP central path

The pr imal-dual SDPsystem:

Ai • X = bi ; i = 1; : : : ; m;
mX

i =1

yi A i + S = C;

X S = 0; X � 0; S � 0:

The pr imal-dual SDPcentral pa th:

A i • X = bi ; i = 1; : : : ; m;
mX

i =1

yi A i + S = C;

X S = �I ; X � 0; S � 0:

Problem: On the centr al path X S = SX , but this is not true outside the
centr al path.
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Search directions

MZ search direction (� X ; � y; � S):

H P (X � S + � X S) = � �I − H P (X S);

A i • � X = r i ; i = 1; : : : ; m;
mX

i =1

� yi A i + � S = Rd:

Symmetr ization oper ator:

H P (M ) = (PM P � 1 + [PM P � 1]T )=2:

P = I : AHO
P = S1=2 : HKM (HRVW/KSH/M)
P such that P T P = X � 1=2[X 1=2SX 1=2]1=2X � 1=2 : NT

Twenty search directions are analyzed and tested by Todd (1999)

MTYwith some directions has O(
√

n ln( � 0=�) iteration complexity .
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Superlinear Convergence for SDP

Kojim a, Shida and Shindoh (1998): MTYpredictor -corr ector with HKM
search direction has super linear con vergence if:

(A) SDPhas a strictly complementar y solution;

(B) SDPis nondegener ate (nonsingular Jacobian)

(C) the iterates con verge tangentially to the centr al path in the sense
that the size of the neighborhood containing the iterates must
a ppr oach zero, namely ,






 (X k )1=2Sk (X k )1=2 − (X k • Sk =n)I








F

X k • Sk
→ 0

Assumption (B) and (C) not requir ed for LP.
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Superlinear Convergence for SDP – continued

P. and Sheng (1998): Superlinear con vergence + polynomiality if

(A) SDPhas a strictly complementar y solution;

(D)
X k Sk

√
X k • Sk

→ 0:

Note that (B) and (C) implies (D).

Both (C) and (D) can be enf orced by the algor ithm; practical
ef�cienc y of such an a ppr oach is questiona ble. I

f several corr ector steps are used the algor ithm has polynomial
complexity and is super linear ly con vergent under assumption (A)
only.

MTYwith KHM direction for predictor and AHO direction for
corr ector , has polynomial complexity and super linear con vergence
of Q-order 1:5 under (A) and (B).
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Superlinear Convergence for SDP – wanted

Kojim a, Shida and Shindoh (1998):

example suggesting that inter ior point algor ithms for SDPbased on
the KHM are unlikely to be super linear ly con vergent without(C).

MTYwith AHO is quadr atically con vergent under (A). Global
con vergence, but no polynomial complexity .

Ji, P. and Sheng (1999): MTYusing the MZ-family.

polynomial complexity (Monteir o).

(A) + (D)⇒ super linear con vergence.

(A) + (B) + scaling matr ices in the corr ector step hav e bounded
condition number ⇒ Q-or der 1.5 .

(A) + (B) + scaling matr ices in both predictor and corr ector step
hav e bounded condition number ⇒ Q-quadr atic con vergence.

WANTED: A super linear ly con vergent algor ithm with O(
√

n ln(� 0=�)) iter-

ation complexity in a wide neighborhood of the centr al path.
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