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4 Overview
o

Interior-point methods in mathem atical programming have
been the largest and most dram atic area of research in
optimization since the de velopment of the simplex method :::
Interior-point methods hav e per manently changed the
landsca pe of mathem atical programming theor vy, practice and
computation :::(Freund & Mizuno 1996).

Major impacts on
» The linear programming problem (LP)
» The quadr atic programming problem (QP)
» The linear complementar ity problem (LCP)
» The semi-de nite programming problem (SDP)

» Some classes of con vex programming problems
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The linear programming problem

min ¢’ x st. Ax = b; x > 0:
X

Dantzig (1947-1951): the simplex method
—good practical performance
—exponential worstcase complexity (Klee and Minty (1972))
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The linear programming problem

min ¢’ x st. Ax = b; x > 0:
X

Dantzig (1947-1951): the simplex method
—good practical performance
—exponential worstcase complexity (Klee and Minty (1972))

Question: Is(LP) solvable in polynomial time?
(in terms of. L = bitlength of data, and n = dim(x))

UMBC Interior Point Methods —p.3/30



The linear programming problem

min ¢’ x st. Ax = b; x > 0:
X

Dantzig (1947-1951): the simplex method
—good practical performance
—exponential worstcase complexity (Klee and Minty (1972))

Question: Is(LP) solvable in polynomial time?
(in terms of. L = bitlength of data, and n = dim(x))

Answer: YES!Khach yan 1979.

UMBC Interior Point Methods —p.3/30



The linear programming problem

min ¢’ x st. Ax = b; x > 0:
X

Dantzig (1947-1951): the simplex method
—good practical performance
—exponential worstcase complexity (Klee and Minty (1972))

Question: Is(LP) solvable in polynomial time?
(in terms of. L = bitlength of data, and n = dim(x))

Answer: YES!Khach yan 1979.

Proof: The ellipsoid method (an interior point method)
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Complexity
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Complexity

Khach yan (1979-1980): the ellipsoid method

—iteration complexity: O(n°L)

— computational complexity: O(n*L)

Note: Bad practical performance.

Observed complexity same as worstcase complexity .
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Complexity

B

Khach yan (1979-1980): the ellipsoid method

—iteration complexity: O(n°L)

— computational complexity: O(n*L)

Note: Bad practical performance.

Observed complexity same as worstcase complexity .

Karmarkar (1984): projectiv e scaling

— iteration complexity: O(nL)

— computational complexity: O(n*°L)

Note: A variant of the algor ithm implemented in KORBX(1989).
Practical performance better than theor etical complexity .
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Complexity

T

Khach yan (1979-1980): the ellipsoid method

—iteration complexity: O(n°L)

— computational complexity: O(n*L)

Note: Bad practical performance.

Observed complexity same as worstcase complexity .

Karmarkar (1984): projectiv e scaling

— iteration complexity: O(nL)

— computational complexity: O(n*°L)

Note: A variant of the algor ithm implemented in KORBX(1989).
Practical performance better than theor etical complexity .

State of the Art:

—iteration complexity: O(4/nL)

— computational complexity: O(n®L)
n3

(Anstreicher (1999) O(logn L))
Note: Excellent software pac kages: CPLEX,LOQO, Mosek, OSL,PCx
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How is polynomiality proved?

Primal-dual algorithms:

Obtain a sequence of points with duality gap k — O.

Best complexity isobtained for path-f oIIowirbg methods where ( k) is
Q-linear ly con vergent with Q-factor (1 — = (n)):

ki1 < (1 — =/n) «; k=0;1;:::

or for potential reduction method where ( k) isR-linearly con vergent
with R-factor (1 — =y/n):

< Q- =/ k=01;:::
In both cases we hav e

« < for k= O(yv/nlog(—2))

If <2 2 then (x*;y*;s*) can be rounded to an exact solution in O(n?)
arithmetic oper ations . Hence the O(+/nL)-iteration complexity .
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Superlinear convergence

Polynomiality isproved by showing that ¢ con verges linearly. Efcient
algor ithms hav e superlinear con vergence:

k1 <k k> K=071 000 k — 0
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Superlinear convergence

Polynomiality isproved by showing that ¢ con verges linearly. Efcient
algor ithms hav e superlinear con vergence:

k1 <k k> K=071 000 k — 0

Q-quadr atic convergence @ k41 < ¢
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Superlinear convergence

Polynomiality isproved by showing that ¢ con verges linearly. Efcient
algor ithms hav e superlinear con vergence:

ke1 < k k5 K=0;1;::0; k — 0
Q-quadr atic convergence : k41 < :
superlinear con vergence of Q-order ! : i1 <
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Superlinear convergence

Polynomiality isproved by showing that ( con verges linearly. Efcient
algor ithms hav e superlinear con vergence:

ki1 < k k5 k=015 k — 0
Q-quadr atic con vergence : k+1 < :
superlinear con vergence of Q-order !: i3 <

» Zhang, Tapia and Dennis (1992): sufcient conditions for superlinear
con vergence for path-f ollowing methods for LP;

» Zhang, Tapia and P (1993): gener alization for QP and LCP;

» Ye, Giler, Tapia and Zhang (1993): The Mizuno-Todd-Y e
predictor -corrector method has O(4/nL) complexity and
Q-quadr atic con vergence under gener al conditions;

» Ye and Anstreicher (1993):. gener alization for LCP under strict
complementar ity.
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Benefits of superlinear convergence

» Convergence isfaster than indicated by worstcase complexity .

» The condition of the linear systemsto be solved at each iteration
worsensas  decr eases. Superlinearly con vergent algor ithms need
only a couple of iterations with small .
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Benefits of superlinear convergence

» Convergence isfaster than indicated by worstcase complexity .

» The condition of the linear systemsto be solved at each iteration
worsensas  decr eases. Superlinearly con vergent algor ithms need
only a couple of iterations with small .

Superlinear con vergence vs. nite termination

Mehrotra and Ye (1993): if  issmall enough then a projection can be
used to nd the exact solution. Does superlinear con vergence setin
(much) before such a projection works?
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Benefits of superlinear convergence

umBec

» Convergence isfaster than indicated by worstcase complexity .

» The condition of the linear systemsto be solved at each iteration
worsensas  decr eases. Superlinearly con vergent algor ithms need
only a couple of iterations with small .

Superlinear con vergence vs. nite termination

Mehrotra and Ye (1993): if  issmall enough then a projection can be
used to nd the exact solution. Does superlinear con vergence setin
(much) before such a projection works?

Superlinear con vergence iseven more impor tant for SDPsince:
» no analogous of simplex
» interior point methods —the only ef cient solvers
» no nite termination schemes

» condition of linear systemsismore critical
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Convergence of the iterafes

k — 0. Isthe sequence of iterates con vergent?
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Convergence of the iterafes

k — 0. Isthe sequence of iterates con vergent?

» Tapia, Zhang and Ye (1995): sufcient conditions for con vergence of
iterates. Can they be satised with preservation of polynomial
complexity?

» Gonzag a and Tapia (1997): the iterates of MTY con verge to the
analytic center of the solution set.
MTY: 2 matrix factor izations + 2 bac ksolves, 9Q( «) = 2.
simplied MTY: asymptotically one factor ization + 2 bac ksolves;
the iterates con verge but not to the analytic center .

» Bonnans and Gonzag a (1996) Bonnans and P (1997): Gener al
Convergence Theory

» P (2001): established superlinear con vergence of the iterates for
several interior point methods .
The simplied MTYisQ-quadr atically con vergent.
MTY appear snot to be Q-super linearly con vergent.
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Worst case vs. probabilistic analysis

The simplex method has exponential worst case complexity but has
good practical performance. Why?
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Worst case vs. probabilistic analysis

The simplex method has exponential worst case complexity but has
good practical performance. Why?
The expected number of pivots is O(n?) !

(Adler, Borgw ardt, Megiddo, Shamir, Smale, Todd; See Shamir(1992))
Thisisa strongly polynomial proba bilistic complexity result
(no dependence on L).

Are there corresponding results for interior point methods?

UMBC Interior Point Methods —p.9/30



Worst case vs. probabilistic analysis

The simplex method has exponential worst case complexity but has
good practical performance. Why?

The expected number of pivots is O(n?) !

(Adler, Borgw ardt, Megiddo, Shamir, Smale, Todd; See Shamir(1992))
Thisisa strongly polynomial proba bilistic complexity result
(no dependence on L).

Are there corresponding results for interior point methods?

Antreicher, Ji, Pand Ye (1999). The expected value of the number of
iterations needed for an infeasible start interior point method of MTY
type to nd an exact solution of the LPor to deter mine that the LPis

infeasible isat most O(y/ninn) !
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Worst case vs. probabilistic analysis

The simplex method has exponential worst case complexity but has
good practical performance. Why?
The expected number of pivots is O(n?) !

(Adler, Borgw ardt, Megiddo, Shamir, Smale, Todd; See Shamir(1992))
Thisisa strongly polynomial proba bilistic complexity result
(no dependence on L).

Are there corresponding results for interior point methods?

Antreicher, Ji, Pand Ye (1999). The expected value of the number of
iterations needed for an infeasible start interior point method of MTY
type to nd an exact solution of the LPor to deter mine that the LPis

infeasible isat most O(y/ninn) !

Numer ical experience with a very large number of problems show that
inter ior point methods need 30-50 iterations to con vergence. Can the
above proba bilistic results be improved?

Polylog proba bilistic complexity?
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Wide neighborhoods of the central path

Primal-dual path-f ollowing algor ithms acting in wide neighborhoods of
the centr al path are the most ef cient interior point methods .

Parado xically the best complexity results were obtained for algor ithms
acting in narrow neighborhoods .

Recent work closes this gap (P, Math. Prog. 2003).
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Wide neighborhoods of the central path

Primal-dual path-f ollowing algor ithms acting in wide neighborhoods of
the centr al path are the most ef cient interior point methods .

Parado xically the best complexity results were obtained for algor ithms
acting in narrow neighborhoods .

Recent work closes this gap (P, Math. Prog. 2003).

The horizontal linear complementar ity problem (HLCP)

XS
Qx + Rs

X;S >

0
b
0)
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Wide neighborhoods of the central path

Primal-dual path-f ollowing algor ithms acting in wide neighborhoods of
the centr al path are the most ef cient interior point methods .

Parado xically the best complexity results were obtained for algor ithms
acting in narrow neighborhoods .

Recent work closes this gap (P, Math. Prog. 2003).

The horizontal linear complementar ity problem (HLCP)

XS
Qx + Rs

X;s >

0
b
0)

HLCPismonotone iff Qu+ Rv=0=u'v >0;Vu;v € IR":
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Wide neighborhoods of the central path

Primal-dual path-f ollowing algor ithms acting in wide neighborhoods of
the centr al path are the most ef cient interior point methods .

Parado xically the best complexity results were obtained for algor ithms
acting in narrow neighborhoods .

Recent work closes this gap (P, Math. Prog. 2003).

The horizontal linear complementar ity problem (HLCP)

xs = 0
Ox+Rs = Db
;s > 0

HLCPismonotone iff Qu+ Rv=0=u'v >0;Vu;v € IR":
HLCP isskew-symmetr ic iff Qu+ Rv=0=u'v = 0;Vu;v € R" :

QP reduces to a monotone HLPC.LPreduces to a skew-symmetr ic HLCP
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The Cenftral Path

The set of all feasible points isdenoted by
F={z=[x;s]€RY : Qx+ Rs= b}
where [x; s | denotes the vector [x';s']". Ifthe relativ e interior of F,
FU = ]—“\ IR,

Isnot empty , then the nonlinear system,

2 3
XS — e

Qx+ Rs—Db

F (2) =4 S =0:

has a unique positive solution for any > 0. The set of all such solutions
de nes the centr al path C of the HLCR.e.,

C={zecR¥ :F(2=0, >0}:
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Cenftral Path Neighborhoods

Proximity measur es:

XS XS

2(2) = H—e 2; 1 (2) = ﬁ—el;
B XS _ _X's
1 (2) = H—e (Z)_T'

Corresponding neighborhoods:
No()={zeF’ : 2(2) < };

j\/’l():{ze]—“O: 1 (2) £}
M()={zeF : (@< }:

Relation betw een neighborhoods:

No( )CNL ()N (); and Ii[nl/\fl( )= F:
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First order predictor

Input:zeD( )={zeF° : xs> (2)}=M Q- ).
z()=z+ w;

where
w=[u;v]|=—Fg(z) 'Fo(2)

iIsthe Newton direction of Fg at z (the af ne scaling direction), i.e.,

SU+ Xv = —XS
Qu+ Rv = O:
o 2(1-)

21— )+n+' ad- yn+tD+n2

C=argmin { () :z()eD(@ - ) )}
Output:z=z( )eD((@ - ) ):
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First order corrector

Input:Zze D((1 — ) ).
Z()=Z+ W,;

where
W=[X5s|]=-F’»@ 'F x@;

isthe center ing direction at Z,i.e.,

Su +

QU +

<
[

(Z) — XS
0:

A X
<|
I

Output: z+ = z( 1) € D( ).

First order predictor —corrector .
Input: z € D( ), Output: z+ € D( ).

ltera tive algor ithm: Given z° € D( ).
Fork=0;1;:::1z«— 2% Z¢t' —zt: 1« (z7); k—k+ 1.
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Convergence results

T

Theorem If HLCPismonotone then the algor ithm iswell de ned and
!

29IO 1- )

16(n + 2)

k+1 < 1 —

Corollary O(nL )-iteration complexity .

Theorem If the HLCP has a strictly complementar vy solution, then the
sequence { «} gener ated by Algorithm 1 con verges quadr atically to
zero in the sense that

«+1= O( )

Comments: Same complexity as Gonzag a (1999) plus quadr atic con-
vergence. In Gonzag a's algor ithm a predictor isfollowed by an apriori
unkno wn number of corrector s. The complexity result isproved by show-
ing that the total number of corrector sisat most O(nL). The structur e
of Gonzag a' salgor ithm makes it very dif cult to analyze the asymptotic

con vergence proper ties of the duality gap. No superlinear con vergence

results hav e been obtained so far for his method.
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A higher order predictor

Input: z € D( ).
x
z( )=z+ W

I
—_

where w' = [u'; V' | are given by

8
S sut+ xv! = —xs
Qu'+ Rvl =0
8
S osul+xv' o= - 0 uyV
B ;1= 2;3;:0,m

Qu + RV =0
(one factor ization + m bac ksolves ,0(n?®) + m O(n?) arith. oper ations)
S =argmin{ () :z()eD(@- ) )}:

Output:Zz=z( )eD({(1 - ) ):
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The higher order predictor corrector

Given z® € D( ).
Fork = 0:1;::::
7 «— 7%
Obtain z by the higher order predictor;
Obtain z™ by the rstorder corr ector;
2t — 7zt 1 — (27); k—k+ 1

Theorem If HCLPismonotone then the algor ithm iswell de ned and

I
SRy
\/ﬁm+1\/m K

k+1 < 1-—:16 k=0;1;:::

Corollary O n*=2t=m+D|  _jteration complexity .

Corollary If m = O([(n + 2)' — 1]), then O (4/nL) -iteration complexity .
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The higher order predictor corrector

Given z® € D( ).
Fork = 0:1;::::
7 «— 7%
Obtain z by the higher order predictor;
Obtain z™ by the rstorder corr ector;
2t — 7zt 1 — (27); k—k+ 1

Theorem If HCLPismonotone then the algor ithm iswell de ned and

I
SRy
\/ﬁm+1\/m K

k+1 < 1-—:16 k=0;1;:::

Corollary O n*=2t=m+D|  _jteration complexity .

Corollary If m = O([(n + 2)' — 1]), then O (4/nL) -iteration complexity .
imn(=') = 1: 0= ) < gl=te). yp,

UMBC Interior Point Methods —p.17/30



The higher order predictor corrector — confinued

Theorem We hav e

m 41

k1 = O( ") ; If HLCPisnondegener ate ;

and
«r1= O( MTY=2) - if HLCPisdegener ate :

Conc lusion The rstalgor ithm with O (y/nL) -iteration complexity and
superlinear con vergence for degener ate LCPin the wide neighborhood
of the centr al path.

Remark If we take ! = 0:1then the values of m = [(n+ 2)' —1],
corresponding to n= 10° n= 10", n = 10% and n= 10’ are 3,5, 6, and 7
respectiv ely. Thiscorresponds with ef cient practical implementation of
interior point methods where the same factor ization isused from 3to 7
times.
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Semidefinite programming (SDP)

(Primal)
minimize CeX
subject to AieX =b;i=1:::;m; X > 0:
(Dual)
maximize b'y
X0
subject to ViAi+ S=C; S>0:
=1
data: C;A;; —n x n symmetr ic matrices; b= (b;;:::;bn)" € R™.

primal variable: X, symmetric & p.s.d.
dual variables: y e R", S, symmetric & p.s.d.
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SDP central path

umBec

The primal-dual SDPsystem:

AieX =b:i=1:::'m

The primal-dual SDPcentral path:

Problem: On the centr al path XS = SX, but this isnot true
centr al path.

outside the
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Search directions

MZ search direction ( X; vy; 9S):

Hp (X S+ XS)= | —Hp(XS);
Aie X =i 1=1:00,m;
X

yiAi+ S = Ry:

i=1

Symmetr ization oper ator:
Hp(M)= (PMP '+ [PMP '")=2:

P=1:AHO
P = S'*2 : HKM (HRVW/KSH/M)
P such that PTP = X !72[X 725X 1=2]172x 172: NT

Twenty search directions are analyzed and tested by Todd (1999)
MTY with some directions has O(+/nIn( ¢=) iteration complexity .
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Superlinear Convergence for SDP

Kojima, Shida and Shindoh (1998): MTY predictor -corr ector with HKM
search direction has superlinear con vergence |f:

(A) SDPhas a strictly complementar vy solution;
(B) SDPisnondegener ate (nonsingular Jacobian)

(C) the iterates con verge tangentially to the centr al path inthe sense
that the size of the neighborhood containing the iterates must

approach zero, namely

(x k)1:28k(X k)1:2 . (X k ° Sk:n)l
Xk o SK

F —0

Assumption (B) and (C) not required for LP
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Superlinear Convergence for SDP — continued

P and Sheng (1998). Superlinear con vergence + polynomiality if

(A) SDPhas a strictly complementar y solution;

X K gk
(D) — 0:
VX Kk o Sk

» Note that (B) and (C) implies (D).
» Both (C) and (D) can be enforced by the algor ithm; practical
ef cienc y of such an approach isquestiona ble. |

» f several corrector steps are used the algor ithm has polynomial
complexity and issuperlinearly con vergent under assumption (A)
only.

» MTYwith KHM direction for predictor and AHO direction for
corr ector , has polynomial complexity and superlinear con vergence
of Q-order 1:5under (A) and (B).
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Superlinear Convergence for SDP — wanfed

Kojima, Shida and Shindoh (1998):.

» example suggesting that interior point algor ithms for SDPbased on
the KHM are unlikely to be superlinearly con vergent without(C).

» MTYwith AHO isquadr atically con vergent under (A). Global
con vergence, but no polynomial complexity .

Ji, Pand Sheng (1999): MTY using the MZ-family.
» polynomial complexity (Monteir o).
» (A) + (D)= superlinear con vergence.

» (A) + (B) + scaling matrices in the corrector step have bounded
condition number = Q-order 1.5.

» (A) + (B) + scaling matrices in both predictor and corrector step
hav e bounded condition number = Q-quadr atic con vergence.
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Superlinear Convergence for SDP — wanfed

B

Kojima, Shida and Shindoh (1998):.

» example suggesting that interior point algor ithms for SDPbased on
the KHM are unlikely to be superlinearly con vergent without(C).

» MTYwith AHO isquadr atically con vergent under (A). Global
con vergence, but no polynomial complexity .

Ji, Pand Sheng (1999): MTY using the MZ-family.
» polynomial complexity (Monteir o).
» (A) + (D)= superlinear con vergence.

» (A) + (B) + scaling matrices in the corrector step have bounded
condition number = Q-order 1.5.

» (A) + (B) + scaling matrices in both predictor and corrector step
hav e bounded condition number = Q-quadr atic con vergence.

WANTED: A superlinear ly con vergent algor ithm with O(y/nin( ¢=)) iter-

ation complexity in a wide neighborhood of the centr al path.
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