Sustainable Design of Reinforced Concrete Structures through CO₂ Emission Optimization

DongHun Yeo, M.ASCE1; and Florian A. Potra2

Abstract: Efforts are being made to achieve more efficient operation of buildings, with the goal of reducing the construction industry’s contribution to energy consumption and greenhouse gas emissions. That contribution also includes the energy embodied in structures; that is, the energy consumed in the processes of extracting, manufacturing, transporting, and installing construction materials (including recycled materials) and elements. In particular, in spite of the use of additives such as fly ash, reinforced concrete (RC) structures, which are large consumers of cement, are responsible for a sizable proportion of worldwide carbon emissions. These emissions can be reduced significantly through the more efficient use of both concrete and steel that can be achieved by optimization. Modern optimization tools are now available that make it possible to perform large volumes of calculations efficiently that are applicable to a wide variety of structural engineering problems. This study presents an optimization approach developed with a view to allowing decision makers to balance sustainability and economic objectives. To illustrate this approach, an RC frame under gravity and lateral loads is considered in this paper. It was found that, depending upon the parameter values used in the calculations, the design optimized with respect to the CO₂ and economic objectives. To illustrate this approach, an RC frame under gravity and lateral loads is considered in this paper. It was found that, depending upon the parameter values used in the calculations, the design optimized with respect to the CO₂ footprint values per unit volume are relatively low. However, because concrete is the most widely used material in construction, their total values in RC structures are significant. Additional research aimed at ascertaining the extent to which this is the case is warranted. DOI: 10.1061/(ASCE)ST.1943-541X.0000888. © 2014 American Society of Civil Engineers.

Author keywords: Carbon emissions; Cost optimization; CO₂ footprint optimization; Greenhouse gas emissions; Reinforced concrete; Optimization; Special design issues.

Introduction

Worldwide, buildings are responsible for between 25% and 40% of total energy use (IEA 2005). According to studies carried out by the Organisation for Economic Cooperation and Development (OECD), the residential and commercial building sectors are responsible for approximately 30% of primary energy consumed and of greenhouse gas emissions in OECD countries (OECD 2003).

Most efforts to reduce carbon dioxide (CO₂) emissions during a given building’s service life are focused on reducing the energy required to operate and maintain it (i.e., the operating energy). Measures that significantly reduce operating energy have been implemented by design professionals and the building industry (WBCSD 2008). Some of these measures, like solar roofing, are fairly radical. Others, such as reducing the energy consumption of refrigerators, are more incremental in nature. However, operating energy is only one part of the total energy that buildings consume. Indeed, raw material acquisition, transport, processing (manufacturing), distribution, and construction represent embodied energy. Provided that a cradle-to-grave system boundary is employed (Goggins et al. 2010), the calculation of embodied energy also accounts for the energy used for demolition (Yohanis and Norton 2002).

The quantification of the embodied energy and CO₂ footprint for any particular building material is an inexact science and requires a “long view” look at the entire manufacturing and utilization process [using, e.g., life cycle assessment (LCA); see Goggins et al. 2010]. Nevertheless, reasonable estimates of the embodied energy and CO₂ footprint of most common construction materials have been compiled (e.g., Alcorn 2003; Venkatarama Reddy and Jagadish 2003; CTBUH 2009; Hammond and Jones 2008), and will be used in this paper.

The embodied energy of building materials, including concrete, can account for a fairly significant share of the total energy use of a country. Estimates suggest that 10% of the total energy consumption in the United Kingdom and Ireland is embodied in materials (UNDP 2007). Embodied energy’s share of total life-cycle energy was estimated to vary from country to country, with estimates ranging as low as 5% and as high as 40% (Sartori and Hestnes 2007). These percentages are likely to increase as the amount of operating energy decreases (Yohanis and Norton 2002). The energy embodied in reinforced concrete (RC) structures contributes a nonnegligible part—as much as 5% to 10%—of that share.

For materials used in typical concrete mixes, the embodied energy and CO₂ footprint values per unit volume are relatively low. However, because concrete is the most widely used material in construction, their total values in RC structures are significant. Also, unlike steel, concrete typically is not recycled for direct reuse in most structures.

For RC structures, embodied energy or CO₂ footprint reduction can be achieved not only by the use of novel building materials, such as low-carbon cements and clinker substitutes...
The main objective of this paper is to apply an optimization method based on mathematical expressions of constraints and objective functions to a simple case study—a frame structure under gravity and lateral load—to explore the implications, from a cost standpoint, of using the total CO₂ footprint as the objective function to be minimized. The structure considered in the case study is a simplified model that mimics the essential features of an actual frame. For comparison, the implications from the standpoint of the CO₂ footprint are also examined for the case in which the total cost is used as the objective function. In each case, the role of the ratio of the cost of steel to that of concrete on the conclusions is also examined. The research is a first step toward developing more elaborate optimization procedures, based on more than one objective function, to be used as tools for making optimal decisions entailing the societal costs of carbon emissions.

Case Study: Description and Optimization Methodology

Problem Description

The study considers an RC single frame (height \(H = 4.7 \) m and length \(L = 12 \) m) consisting of one beam and two columns (Fig. 1).

It is assumed that (1) the column has a square section with dimension \(h_c \); (2) the beam has height \(h_b \); and (3) the beam width is \(b_b = h_c \). (The latter assumption is adopted for the sake of simplification; in practice, the width of the beam is typically less than the width of the columns to avoid reinforcement interference.) The structure is assumed to be subjected to gravity loading uniformly applied to the beam, and wind-induced lateral loading applied at height \(H \) as a concentrated load. Based on the provisions of the ASCE 7-10 Standard (ASCE 2010), and denoting the tributary width of the structure by \(B \), the gravity load consists of dead load and live load, estimated to be \(q_D = 2B \) \([kN/m^2]\) and \(q_L = 4B \) \([kN/m^2]\), respectively. The wind loads, induced by wind speeds
with a 700-year mean recurrence interval (MRI) and a 50-year MRI, were assumed to be $W_{700-yr} = 1.39BH$ [kN/m²] and $W_{50-yr} = 0.814BH$ [kN/m²], respectively. In addition to those loads, loads due to self-weight of the members were taken into account. Three load combinations were employed:

- **LC1:** $1.2D + 1.6L_l$
- **LC2:** $1.2D + L_l + W$
- **LC3:** $0.9D + W$

where D is the dead load, L_l is the live load, and W is the wind load. The corresponding ultimate design loads (i.e., P_u (axial force), M_u (bending moment), and V_u (shear force)) acting on the critical sections of the beam and columns are summarized in Fig. 2, where q_1, q_2, and q_3 denote uniformly distributed ultimate gravity loads corresponding to the load combinations (LCs) specified in Eqs. (1a)–(1c), respectively. The design of the frame structure for strength and serviceability is based on the ACI 318-11M Code (ACI 2011). In addition to the loads listed in Fig. 2, two cases were considered where the columns were subjected to additional axial compression forces: (1) $P = 3,000$ kN, and (2) $P = 6,000$ kN. These forces are, respectively, about 40% and 80% of the full compression strength of the concrete f'_cA_{gs}. This was done with the goal of assessing the effect of hypothetical gravity loads due to additional floors in multistory buildings.

The objective of this study is to use optimization methods to determine feasible designs that minimize both cost and the CO₂ footprint, and to provide an insight into the trade-offs between cost and energy optimization in structural design.

Design Variables and Parameters

The design variables are the beam height h_b; the column height h_c; the total area of the longitudinal reinforcement A_{sb} for the mid-section and A_{sc} for the end-section of the beam; the total area of the axial reinforcement A_{sc} of the column; the spacing s_{b1} and s_{b2} of the shear reinforcement for the midspan and end span of the beam; and the spacing s_{c1} and s_{c2} for the midspan and end span of the column, the area of each reinforcement bar provided for shear resistance being $A_{sb} = 201$ mm², corresponding to a #5 (U.S.) reinforcing bar. The length of the end span is assumed to be $L_{sb} = L/4$ for each end of the beam and $L_{sc} = H/4$ for the columns, while the length of the midspan is $L/2$ for the beam and $H/2$ for the columns. For numerical convenience, all nine variables are treated as continuous variables. The design parameters, defined as constants during the optimization process, are listed in Table 1, and the authors believe that they represent common values used in RC practice.

Table 1. Design Parameters and Corresponding Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete compressive strength</td>
<td>$f'_c = 40$ MPa (5.8 ksi)</td>
</tr>
<tr>
<td>Reinforcement yield strength</td>
<td>$f_y = 420$ MPa (60 ksi)</td>
</tr>
<tr>
<td>Modulus of elasticity of steel</td>
<td>$E_s = 2 \times 10^5$ MPa (29,000 ksi)</td>
</tr>
<tr>
<td>Specific mass of concrete</td>
<td>$\rho_c = 2,400$ kg/m³ (150pcf)</td>
</tr>
<tr>
<td>Specific mass of steel</td>
<td>$\rho_s = 7,850$ kg/m³ (490pcf)</td>
</tr>
<tr>
<td>Lightweight concrete factor</td>
<td>$\lambda = 1$ (for normal weight)</td>
</tr>
<tr>
<td>Strength reduction factor for shear</td>
<td>$\phi_s = 0.75$</td>
</tr>
<tr>
<td>Strength reduction factor for flexure</td>
<td>$0.817 \leq \phi_b \leq 0.9$</td>
</tr>
<tr>
<td>Strength reduction factor for axial force</td>
<td>$0.65 \leq \phi_s \leq 0.9$</td>
</tr>
<tr>
<td>Maximum usable strain at extreme concrete compression fiber</td>
<td>$\varepsilon_{cu} = 0.003$</td>
</tr>
<tr>
<td>Tributary width</td>
<td>$B = 7$ m</td>
</tr>
<tr>
<td>Concrete cover (includes radius of fictitious bar having area A_{s})</td>
<td>$d' = 65$ mm</td>
</tr>
<tr>
<td>Area of shear reinforcement</td>
<td>$A_{sb} = A_{sc} = 201$ mm² [#5 (U.S.)]</td>
</tr>
<tr>
<td>Diameter of shear reinforcement</td>
<td>$d_{sc} = 15.875$ mm [#5 (U.S.)]</td>
</tr>
</tbody>
</table>
Objective Functions

The objective functions corresponding to the minimization of cost and the CO₂ footprint are

\[f_1 = C \left(2h_c^2H + h_c h_b L + \left(\rho_t \frac{RC_c}{100} - 1 \right) \right) \]

\[\times \left[0.7L_{Asb1} + L_{Asb2} + \frac{2L_{vb} A_{vb}}{s_b} (2h_b + h_c) + \frac{(L - 2L_{vb}) A_{vb}}{s_{max,b}} (2h_b + h_c) + (2H - h_b) A_{sc} + \frac{4L_{vb} A_{vb}}{s_c} (4h_c - 4d_b) + \frac{(H - 2L_{vb}) A_{sc}}{s_{max,c}} (4h_c - 4d_b) \right] \]

(2)

and

\[f_2 = E \left(2h_c^2H + h_c h_b L + \left(\rho_t \frac{RC_c}{100} - 1 \right) \right) \]

\[\times \left[0.7L_{Asb1} + L_{Asb2} + \frac{2L_{vb} A_{vb}}{s_b} (2h_b + h_c) + \frac{(L - 2L_{vb}) A_{vb}}{s_{max,b}} (2h_b + h_c) + (2H - h_b) A_{sc} + \frac{4L_{vb} A_{vb}}{s_c} (4h_c - 4d_b) + \frac{(H - 2L_{vb}) A_{sc}}{s_{max,c}} (4h_c - 4d_b) \right] \]

(3)

where \(C \) and \(E \) are the cost and the CO₂ footprint of concrete per cubic meter, respectively; \(R_C \) is the ratio of the cost of steel per 100 kg to the cost of concrete per cubic meter; \(R_{CO_2} \) is the ratio of the CO₂ footprint of 100 kg of reinforcement steel to the CO₂ footprint of concrete per cubic meter; and \(\rho_t \) is the specific mass of steel. The first and second terms in the braces of Eqs. (2) and (3) are the gross volume of the concrete in the columns and the beam. The expressions between the brackets in Eqs. (2) and (3) are the volume \(V_s \) of steel in the columns and the beam (see Fig. 1 for details). In Eqs. (2) and (3), the cost of steel in the structure is calculated as a product of the volume of steel \(V_s \) and the cost of steel per volume \((C' \rho_t R_C/100)\), while the CO₂ footprint of steel is calculated as a product of \(V_s \) and the CO₂ footprint of steel per volume \((E' \rho_t R_{CO_2}/100)\). The product of the term –1 in the expression in parentheses by the expression in the brackets (i.e., the volume of steel \(V_s \)) changes the gross volume to the net volume of concrete.

Estimates of the CO₂ footprints and the costs of construction materials can vary with time and location (Alcorn 2003; Guerra et al. 2011; Paya-Zaforuzza et al. 2009; Sahab et al. 2005). The values employed in this study are summarized in Table 2.

Formulation of Optimization Problem and Solution Method

Constraints for this optimization problem can be divided into two parts: constraints for serviceability and for strength. The constraints for serviceability are maximum allowable vertical deflection \([L/240; \text{Eq. (4)}]\) and maximum allowable horizontal deflection \([H/400; \text{Eq. (5)}]\):

\[\frac{gL^4}{48E_c I_b} \left(\frac{5}{8} - \frac{1}{\beta e + 2} \right) - \frac{L}{240} \leq 0 \]

(4)

\[\frac{W_{50,y} H^3}{24E_c I_c} \left(\frac{4\beta + 6e}{\beta + 6e} \right) - \frac{H}{400} \leq 0 \]

(5)

where \(I_b \) and \(I_c \) are the moments of inertia for the beam and the column, respectively; \(E_c \) is the modulus of elasticity of concrete; and \(W_{50,y} \) is the wind-induced lateral load for MRI = 50 years as previously defined.

The constraints for the strength of the beam include the flexural strengths at midspan and at the ends of the member [Eq. (6)], the minimum and maximum requirements for flexural reinforcement [Eqs. (7) and (8)], the shear strength at the ends [Eq. (9)], and the minimum and maximum requirements for the spacing of shear reinforcement [Eqs. (10)–(12)]:

\[M_u - \phi_p M_n \leq 0 \]

(6)

\[\max(0.25 \sqrt{f_y}, 1.4) \frac{b_b d_b}{f_y} - A_{sb} \leq 0 \]

(7)

\[A_{sb} f_y - \frac{3}{7} 0.85 f_y' \beta_1 (h_b - d_b') b_b \leq 0 \]

(8)

\[V_u - \phi_c 0.17 \sqrt{f_y' b_b (h_b - d_b')} - \phi_c A_{sb} f_y \frac{d_b}{s_b} \leq 0 \]

(9)

\[s_b - \frac{A_{sb} f_y}{\max(\sqrt{\frac{f_y}{16 e}}, \frac{1}{2}) h_b} \leq 0 \]

(10)

\[s_b \leq \begin{cases} \min(\frac{d_b}{2}, 600 \text{ mm}) & \text{for } V_s < 0.33 \sqrt{f_y' b_b d_b} \\ \min(\frac{d_b}{2}, 300 \text{ mm}) & \text{for } V_s \geq 0.33 \sqrt{f_y' b_b d_b} \end{cases} \]

(11)

\[\frac{A_{sb} f_y d_b}{s_b} - 4 \sqrt{\frac{f_y'}{6} b_b d_b} \leq 0 \]

(12)

where \(b_b \) is the beam width; \(d_b \) is the distance from the extreme compression fiber to the centroid of the longitudinal tension reinforcement of the beam (defined as the difference between the height \(d_b \) and the concrete cover \(d_b' \)); \(A_{sb} \) is the flexural reinforcement; and \(\beta_1 \) is the area of the factor relating the depth of equivalent rectangular compression stress block to the neutral axis depth. Additional variables in these equations have been defined in previous sections of this paper or in Table 1.

The constraints for the strength of the columns are functions of the combined axial forces and moments [Eq. (13)], the minimum and maximum requirements for the area of axial reinforcement [Eqs. (14) and (15)], shear strength [Eq. (16)], and the minimum and maximum requirements for the spacing of ties [Eqs. (17)–(19)]:

\[f(M_u, P_u, \phi_c M_n, \phi_v P_n) \leq 0 \]

(13)

\[0.01 h_c^2 - A_{sc} \leq 0 \]

(14)

Table 2. CO₂ Footprint and Cost of Concrete and Reinforcing Steel

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete ((f'_c = 30 \text{ MPa}))</td>
<td>376 (CO₂ kg/m³)</td>
<td>130 ($/m³)</td>
</tr>
<tr>
<td>Concrete ((f'_c = 40 \text{ MPa}))</td>
<td>452 (CO₂ kg/m³)</td>
<td>135 ($/m³)</td>
</tr>
<tr>
<td>Steel, recycled ((f'_s = 420 \text{ MPa}))</td>
<td>35.2 (CO₂ kg/100 kg)</td>
<td>108 ($/100 kg)</td>
</tr>
</tbody>
</table>

Note: Costs are given in U.S. dollars.

\[A_{sc} - 0.08 h_c^2 \leq 0 \]

\[V_u - \phi_v 0.17 \lambda \sqrt{f'c} \left(1 + \frac{P_u}{14h_c^2} \right) h_c (h_c - d'_c) - \phi_v A_{sc} f_y (h_c - d'_c) \leq 0 \]

\[s_c - \frac{A_{sc} f_y}{\max \left(\frac{\sqrt{f'c}}{16}, \lambda \right) h_c} \leq 0 \]

\[s_c - \min (h_b, 48d_{sc}) \leq 0 \]

\[\frac{A_{sc} f_y d_c}{s_c} - 4\lambda \sqrt{f'c} h_c d_c \leq 0 \]

where \(h_c \) is the width of the square column, \(d'_c \) is the concrete cover, \(d_c \) is the distance from the extreme compression fiber to the centroid of the longitudinal tension reinforcement of the column, \(A_{sc} \) is the area of axial reinforcement of the column, \(s_c \) is the spacing of the shear reinforcement with area of \(A_{sc} \), and \(d_{sc} \) is the diameter of the shear reinforcement. Eq. (13) represents the analytical expression of the RC eccentricity-dependent axial-force/bending moment interaction equation. All constraints pertaining to RC member design for serviceability and strength [i.e., Eqs. (4)-(19)] are based on the ASCE 7-10 Standard (ASCE 2010) and the ACI 318-11M Code (ACI 2011).

In this study, the constrained nonlinear optimization solver “fmincon” from MATLAB was used. Since this solver is not guaranteed to compute the global optimum of the problem, it is useful to implement the procedure multiple times, selecting for each implementation a random starting point defined by a set of values for the design variables. This avoids obtaining local minima satisfying all the constraints and increases the chances of obtaining the global minimum of the problem.

Results

It is assumed that the cost and CO\(_2\) footprint of concrete are specified as in Table 2. The corresponding values for steel are defined for four values of \(R_c \) (\(R_c = 0.6, 0.8, 1.0, \) and 1.2) and three values of \(R_{CO2} \) (\(R_{CO2} = 0.068, 0.078, \) and 0.088). The choice of \(R_{CO2} \) ratios was based on estimates of the CO\(_2\) footprint of recycled steel (approximately 35 kg of CO\(_2\) per 100 kg of steel) and the CO\(_2\) footprint of concrete (approximately 400 kg to 500 kg of CO\(_2\) per cubic meter of concrete; for example, 35/450 = 0.078) (Alcorn 2003). The ratio between the cost of the cost-optimized frame and the cost of the CO\(_2\)-optimized frame is denoted by \(r_{cost} \) and the ratio between the CO\(_2\) footprint of the cost-optimized frame and the CO\(_2\) footprint of the CO\(_2\)-optimized frame is denoted by \(R_{CO2} \).

It was indicated previously that three gravity loadings for the columns were considered: (1) loadings due to the self-weight of the frame, (2) loadings due to case (1) and an additional load \(P = 3,000 \) kN, and (3) loadings due to case (1) and an additional load \(P = 6,000 \) kN. The three cases corresponded to three qualitatively different interaction equation diagrams, corresponding to the case of relatively large, medium, and small eccentricities of the axial force. For case (1), the calculations showed that the difference between the CO\(_2\) footprints inherent in the cost-optimized and CO\(_2\)-optimized designs was less than 2%. Therefore, this study focuses on cases (2) and (3).

![Fig. 3. Dependence upon \(R_c \) of the differences in cost and CO\(_2\) footprint (in percentages of totals for the frame) between a cost-optimized frame and a CO\(_2\)-optimized frame, for \(R_{CO2} = 0.078 \) and \(f'_c = 40 \text{ MPa} \)](image)

Dependence upon \(R_c \) and \(R_{CO2} \) of Difference in Costs and CO\(_2\) Footprints

First, an investigation was performed that looked into the dependence of design, optimized for cost or CO\(_2\) footprint, on the variation of the relative cost between concrete and steel. Fig. 3 shows, for \(P = 3,000 \) kN and \(P = 6,000 \) kN, the dependence upon \(R_c \) of the difference in costs, \(r_{cost} \) (in percentages of totals for the frame), between the cost-optimized frame and the CO\(_2\)-optimized frame;
and of the difference in \(\text{CO}_2 \) footprints, \(r_{\text{CO}_2} \), between the cost-optimized frame and the \(\text{CO}_2 \)-optimized frame. The higher value of \(R_C \) corresponds to an increase in the cost of steel and the cost of concrete being fixed. Note that the differences between the \(\text{CO}_2 \) footprint of the cost-optimized and the \(\text{CO}_2 \)-optimized frame generally increase as \(P \) increases. This suggests that the optimization is more effective in reducing the frame’s \(\text{CO}_2 \) footprint if the members are subjected to large compressive forces; in particular, the potential of optimization from this point of view would be stronger for high-rise than for low-rise RC structures.

The dependence of the results upon the assumed values of the concrete and the steel footprint is represented in Fig. 4, which shows that as the ratio \(R_{\text{CO}_2} \) increases (i.e., as the \(\text{CO}_2 \) footprint of steel is larger), the advantage of optimizing the \(\text{CO}_2 \) footprint decreases.

Dependence upon Concrete Compressive Strength of Difference in Costs and \(\text{CO}_2 \) Footprints

In addition, an investigation was performed that looked into the effects of concrete compression strength on optimization effectiveness (Fig. 5). As the concrete strength increases, the difference \(r_{\text{cost}} \) between the costs of the cost-optimized and the \(\text{CO}_2 \)-optimized frames decreases. In addition, the difference \(R_{\text{CO}_2} \) between the \(\text{CO}_2 \) footprints of the cost-optimized and the \(\text{CO}_2 \)-optimized frames decreases. In addition, the difference \(R_{\text{CO}_2} \) between the \(\text{CO}_2 \) footprints of the cost-optimized and the \(\text{CO}_2 \)-optimized frames decreases.

Fig. 5. Dependence upon \(f'_c \) of the difference in cost and \(\text{CO}_2 \) footprint (in percentages of totals for the frame) between a cost-optimized frame and a \(\text{CO}_2 \)-optimized frame, for \(R_C = 0.8 \) and \(R_{\text{CO}_2} = 0.078 \)

Fig. 6. Contributions of concrete and reinforcement to the total cost and total \(\text{CO}_2 \) footprint (notations: \(C_c = \) cost of concrete; \(C_{st} = \) cost of reinforcing steel; \(E_c = \) \(\text{CO}_2 \) footprint of concrete; \(E_{st} = \) \(\text{CO}_2 \) footprint of reinforcing steel), for \(R_C = 0.8 \), \(R_{\text{CO}_2} = 0.078 \), \(f'_c = 40 \) MPa, and \(P = 6,000 \) kN: (a) cost ratio for cost-optimized frame; (b) \(\text{CO}_2 \) footprint ratio for a cost-optimized frame; (c) cost ratio for a \(\text{CO}_2 \)-optimized frame; (d) \(\text{CO}_2 \) footprint ratio for a \(\text{CO}_2 \)-optimized frame
slightly increases. Thus, for stronger concrete, the CO₂ optimization is more effective—that is, it results in (1) a smaller increase in cost and (2) a larger reduction in CO₂ footprint with respect to the cost optimization.

Contributions of Concrete and Reinforcement to Costs and CO₂ Footprints

Also considered were the contributions of the concrete and steel to the cost and the CO₂ footprint, and the question of whether they were different for cost-optimized and CO₂-optimized frames. Fig. 6 represents the contribution of concrete and steel in the columns and beam to the total cost and CO₂ footprint for (1) the cost-optimized and (2) the CO₂-optimized frame, for \(R_c = 0.8 \), \(R_{CO2} = 0.078 \), \(f_y = 40 \text{ MPa} \), and \(P = 6,000 \text{ kN} \). Figs. (a and b) show that for the cost-optimized frame, the contribution of concrete to the total cost is greater than for the CO₂-optimized frame, while the opposite is true of steel. Figs. (b and d) show that the contribution of steel to the total CO₂ footprint is greater for the CO₂-optimized frame than for the cost-optimized frame, while the opposite is true of concrete. Figs. (b and d) also show that most of the contribution to the total CO₂ footprint is due to the concrete, rather than to the steel. Therefore, the statement that concrete has a lower CO₂ footprint than steel, as has been claimed [in Struble and Godfrey (2004) and Ashley and Lemay (2008), among others], is valid only for the footprint of concrete and new steel per unit volume; however, that statement is not applicable to the footprint inherent in the concrete and reinforcing steel used in RC structures.

Conclusions

An exploratory study was presented with the goal of assessing the potential of optimizing RC design for sustainability with respect to CO₂ emissions. The optimization with respect to the CO₂ footprint results in an increase in the relative amount of steel within the members’ cross sections; however, the requisite ductility is ensured via constraints specified in the optimization process. The reduction of the CO₂ footprint achieved by optimizing the design to achieve minimum carbon emissions, as opposed to optimizing the design to achieve minimum cost, is of the order of 5% to 15%, depending upon the parameter values being assumed. That reduction can be smaller for low-rise structures and other structures with predominantly tension-controlled members. However, for structures whose members experience predominantly large compressive forces, such as high-rise buildings, the reduction can be significant; this also may be true of certain prestressed or posttressed concrete members. Additional research aimed at ascertaining the extent to which this is the case is warranted.

Acknowledgments

The authors would like to thank Drs. Rene D. Gabbai and Emil Simiu for useful contributions to this work.

Disclaimer

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

References

ACL. (2011). *Building code requirements for structural concrete (ACI 318-11M)* and commentary, American Concrete Institute, Farmington Hills, MI.

