On the game-theoretic value of a linear transformation on a symmetric cone

M. Seetharama Gowda
Department of Mathematics and Statistics
University of Maryland, Baltimore County
Baltimore, Maryland, USA
gowda@umbc.edu

Jordan Geometric Analysis and Applications
London, September 5, 2014
Outline

- Zero-sum matrix games
- Dynamical systems
- Euclidean Jordan algebras
- Z and Lyapunov-like transformations
- Value of a linear transformation on a EJA
- Completely mixed games
- Value of a Z-transformation
- Value of a Lyapunov-like transformation
- Value inequalities
- Concluding remarks
Consider two players I and II with payoff matrix $A \in \mathbb{R}^{n \times n}$. Player I chooses columns of A with probability/strategy x: $x = (x_1, x_2, \ldots, x_n)^T \in \mathbb{R}^n$, $x \geq 0$, $\sum_1^n x_i = 1$; Player II chooses rows of A with probability/strategy y. Then payoff for I is $\langle Ax, y \rangle$ and payoff for II is $-\langle Ax, y \rangle$.

Theorem of von Neumann: There exist optimal/equilibrium strategies \bar{x} and \bar{y} such that

$$\langle Ax, \bar{y} \rangle \leq \langle A\bar{x}, \bar{y} \rangle \leq \langle A\bar{x}, y \rangle$$

for all strategies x and y.
\(v(A) := \langle A\bar{x}, \bar{y} \rangle \) is called the value of the game.

Min-max Theorem of von Neumann:

\[
\max_{x \in \Delta} \min_{y \in \Delta} \langle Ax, y \rangle = \min_{y \in \Delta} \max_{x \in \Delta} \langle Ax, y \rangle,
\]

where \(\Delta := \{ x = (x_1, x_2, \ldots, x_n)^T \in R^n : x \geq 0, \sum_1^n x_i = 1 \} \).

The common value is \(v(A) \).
A zero-sum matrix game is a special case of Bimatrix game.

A bimatrix game is a special case of (standard) linear complementarity problem.
Uniqueness of optimal strategies

A game is completely mixed if $\bar{x} > 0$ and $\bar{y} > 0$ for every optimal pair (\bar{x}, \bar{y}).

Theorem of Kaplansky (1945):

(i) If $\bar{y} > 0$ for every optimal pair (\bar{x}, \bar{y}), then the game is completely mixed.

(ii) If the game is completely mixed, then the optimal pair is unique.
A square real matrix $A = [a_{ij}]$ is a Z-matrix if $a_{ij} \leq 0$ for all $i \neq j$.

(In Economics, $-A$ is called a Metzler matrix.)

Theorem of Raghavan (1978):

Let A be a Z-matrix.

(i) If $v(A) > 0$, then the game is completely mixed.

(ii) $v(A) > 0$ iff there exists $d > 0$ in \mathbb{R}^n such that $Ad > 0$.

Note: For a Z-matrix, the condition $d > 0$, $Ad > 0$ can be described in more than 52 equivalent ways.
Dynamical systems

For an $n \times n$ real matrix A, the continuous dynamical system $\frac{dx}{dt} + Ax(t) = 0$ is asymptotically stable on \mathbb{R}^n (i.e., any trajectory starting from an arbitrary point in \mathbb{R}^n converges to the origin) if and only if there exists a real symmetric matrix D such that

$$D \succ 0 \quad \text{and} \quad L_A(D) \succ 0,$$

where $D \succ 0$ means that D is positive definite, and

$$L_A(X) := AX + XA^T \quad (X \in \mathcal{S}^n).$$
Here, S^n denotes the space of all $n \times n$ real symmetric matrices and L_A is the so-called Lyapunov transformation. Similarly, the discrete dynamical system $x(k + 1) = Ax(k)$, $k = 0, 1, \ldots$, is asymptotically stable on R^n if and only if there exists a real symmetric matrix D such that

$$D \succ 0 \quad \text{and} \quad S_A(D) \succ 0,$$

where S_A is the so-called Stein transformation on S^n:

$$S_A(X) := X - AXA^T \quad (X \in S^n).$$
Note similar inequalities:

- In \mathbb{R}^n, $d > 0$, $Ad > 0$ for a \mathbf{Z}-matrix
- In \mathbb{S}^n, $D \succ 0$ and $L_A(D) \succ 0$
- In \mathbb{S}^n, $D \succ 0$ and $S_A(D) \succ 0$

Why is this happening? Is there a unifying result?
• \mathbb{R}^n and \mathbb{S}^n are both Euclidean Jordan algebras,

• In \mathbb{R}^n, let $e = (1, 1, \ldots, 1)$. Then $x = (x_1, x_2, \ldots, x_n)$ is a probability vector iff all its eigenvalues x_1, x_2, \ldots, x_n are nonnegative and $\langle x, e \rangle = \sum_1^n x_i = 1$.

In \mathbb{S}^n, let $e = I$ (Identity matrix). We could consider $X \in \mathbb{S}^n$ with all its eigenvalues nonnegative and $\langle X, I \rangle = \text{trace}(X) = \sum_1^n \lambda_i(X) = 1$.
Z-transformations

• In \mathbb{R}^n, let $K = \mathbb{R}^n_+$. Then $A \in \mathbb{R}^{n \times n}$ is a z-matrix iff

$$x \in K, y \in K^*(= K), \text{ and } \langle x, y \rangle = 0 \Rightarrow \langle Ax, y \rangle \leq 0.$$

• In \mathbb{S}^n, let $K = \mathbb{S}^n_+$ (symmetric cone of \mathbb{S}^n). Then, for any $A \in \mathbb{R}^{n \times n}$,

$$X \in K, Y \in K^*(= K), \text{ and } \langle X, Y \rangle = 0 \Rightarrow \langle L_A(X), Y \rangle = 0.$$

• In \mathbb{S}^n, let $K = \mathbb{S}^n_+$. Then, for any $A \in \mathbb{R}^{n \times n}$,

$$X \in K, Y \in K^*(= K), \text{ and } \langle X, Y \rangle = 0 \Rightarrow \langle S_A(X), Y \rangle \leq 0.$$
Euclidean Jordan algebras

A Euclidean Jordan algebra is a triple $(V, \circ, \langle \cdot, \cdot \rangle)$, where $(V, \langle \cdot, \cdot \rangle)$ is a finite dimensional real inner product space and $(x, y) \mapsto x \circ y : V \times V \to V$ is a bilinear mapping satisfying the following conditions:

(i) $x \circ y = y \circ x$, $x \circ (x^2 \circ y) = x^2 \circ (x \circ y)$, and

(ii) $\langle x \circ y, z \rangle = \langle y, x \circ z \rangle$.

Examples: The Jordan spin algebra \mathcal{L}^n, the algebra(s) of $n \times n$ real/complex/quaternion Hermitian matrices, and the algebra of 3×3 octonion Hermitian matrices. Any nonzero EJA is a product of these.
Let V be a EJA and K be its symmetric cone. A linear transformation $L : V \rightarrow V$ is

- a **Z-transformation** if

 $$x \in K, y \in K^* (= K), \quad \text{and} \quad \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle \leq 0,$$

- **Lyapunov-like** if

 $$x \in K, y \in K^* (= K), \quad \text{and} \quad \langle x, y \rangle = 0 \Rightarrow \langle L(x), y \rangle = 0.$$

Theorem: On a EJA V, L is Lyapunov-like iff

$$L = L_a + D,$$

where $a \in V$, $L_a(x) := a \circ x$ and D is a derivation.
How to define the value on a EJA?
Can we extend the results of Kaplansky and Raghavan?

From now on, V is an EJA with its symmetric cone K.

e is the unit element in V and

$\Delta := \{ x \in K : \langle x, e \rangle = 1 \}$.

We think of Δ as the strategy set. Also, instead of the unit element, we could take any $e \in \text{int}(K)$.)
Given a linear transformation $L : V \rightarrow V$, as Δ is compact convex, by a Theorem of von Neumann, there exist optimal strategies \bar{x} and \bar{y} such that

$$\langle L(x), \bar{y} \rangle \leq \langle L(\bar{x}), \bar{y} \rangle \leq \langle L(\bar{x}), y \rangle$$

for all strategies $x, y \in \Delta$.

$v(L) := \langle L(\bar{x}), \bar{y} \rangle$ is called the value of L.

We have

$$v(L) = \max_{x \in \Delta} \min_{y \in \Delta} \langle L(x), y \rangle = \min_{y \in \Delta} \max_{x \in \Delta} \langle L(x), y \rangle.$$
We write \(x \geq 0 \) when \(x \in K \) and \(x > 0 \) when \(x \in \text{int}(K) \).

Let \(L \) be linear on \(V \).

Theorem:

(i) \((\bar{x}, \bar{y})\) is an optimal pair iff \(L^T(\bar{y}) \leq v e \leq L(\bar{x}) \).

(ii) If \((\bar{x}, \bar{y})\) is an optimal pair, then

\[
0 \leq \bar{x} \perp v e - L^T(\bar{y}) \geq 0 \quad \text{and} \quad 0 \leq \bar{y} \perp L(\bar{x}) - v e \geq 0,
\]

In addition, \(\bar{x} \) and \(L^T(\bar{y}) \) operator commute and \(\bar{y} \) and \(L(\bar{x}) \) operator commute.
Corollary:

(i) \(v(-L^T) = -v(L) \).

(ii) \(v(L + \lambda e e^T) = v(L) + \lambda \).

(iii) For any \(A \in Aut(K) \), and \(e \in int(K) \),

\[
v(ALA^T, Ae) = v(L, e).
\]

Note that as \(K \) is homogeneous, one could go from one interior point of \(K \) to another. Thus, for many properties, chosen interior point \(e \) is unimportant.
We say that L is *completely mixed* if
\[\bar{x} > 0 \text{ and } \bar{y} > 0 \text{ for every optimal pair } (\bar{x}, \bar{y}). \]

An EJA generalization of Kaplansky’s Theorem:

(i) If $\bar{y} > 0$ for every optimal pair (\bar{x}, \bar{y}),
then L is completely mixed.

(ii) If L is completely mixed, then the optimal pair is unique.

(iii) If L is completely mixed, then so is L^T and
\[v(L) = v(L^T). \]
An EJA generalization of Raghavan’s Theorem:

The following are equivalent when \(L \) is a \(Z \)-transformation:

(i) \(v(L) > 0 \).

(ii) \(L \) is positive stable (real parts of eigenvalues of \(L \) are positive).

(iii) There exists \(d > 0 \) such that \(L(d) > 0 \).

In addition, \(L \) is completely mixed when \(v(L) > 0 \).

What happens when \(v(L) < 0 \)?
Easy examples show that a \mathbf{Z}-transformation L may not be completely mixed when $v(L) < 0$. However, we have

Theorem:

When L is Lyapunov-like (or Stein-like*) and $v(L) \neq 0$, L is completely mixed.

L is said to be **Stein-like** if $L = I - \Lambda$, where $\Lambda \in \text{Aut}(K)$.

Example: The Stein transformation S_A on S^n given by

$$S_A(X) = X - AXA^T.$$
Value inequalities

Let $V = V_1 \times V_2$ with $K = K_1 \times K_2$.

Let L be linear on V. We write

$$L = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

where $A : V_1 \to V_1$ is linear, etc. If A is invertible, we define the Schur complement

$$L/A := D - CA^{-1}B.$$
Theorem: Suppose L is a \mathbf{Z}-transformation. Then A is \mathbf{Z} on V_1 and D is \mathbf{Z} on V_2.

(i) If $v(L) > 0$, then $v(A) > 0$, $v(D) > 0$ and

$$\frac{1}{v(L)} \geq \frac{1}{v(A)} + \frac{1}{v(D)}.$$

Reverse implications and inequalities hold if L is Lypaunov-like.

(ii) If $v(L) > 0$, then $v(A) > 0$, $v(L/A) > 0$ and

$$\frac{1}{v(L)} \geq \frac{1}{v(A)} + \frac{1}{v(L/A)}.$$
Concluding remarks

(i) The value of a linear transformation on a EJA can be computed by a (symmetric) cone linear program in polynomial time.

(ii) Let L be completely mixed. If L is invertible, then, $v(L) = \frac{1}{\langle L^{-1}(e), e \rangle}$. Also, the unique optimal pair is given by $\bar{x} = v(L) L^{-1}(e)$ and $\bar{y} = v(L) (L^T)^{-1}(e)$.

(iii) Many of the results presented here carry over to self-dual cones.
Some references

(1) Berman and Plemmons, Nonnegative matrices in Mathematical Sciences.

(2) Faraut and Koranyi, Analysis on symmetric cones.

(3) Kaplansky, A contribution to von Neumann’s theory of games.

(4) Karlin, Mathematical methods and theory in games.

(5) Parthasarathy and Raghavan, Some topics in two-person games.

(6) Raghavan, Completely mixed games and M-matrices.