1. (25 pts) Given the matrix \(A = \begin{pmatrix} 2 & 2 \\ -2 & 2 \end{pmatrix} \)

 a) (5 pts) Compute the characteristic polynomial of \(A \).

 b) (5 pts) Find the eigenvalues of \(A \).

 c) (10 pts) Find the eigenvectors of \(A \).

 d) (5 pts) Find a matrix \(P \) such that \(P^{-1}AP \) is diagonal and compute \(P^{-1}AP \).

2. (25 pts) Given the matrix \(A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 2 & 1 \\ -1 & -2 & 5 & 1 \end{pmatrix} \)

 a) (6 pts) Compute \(\text{rank}(A) \).

 b) (6 pts) Find a basis of the column space of \(A \).

 c) (13 pts) Find a basis of the null space of \(A \).

3. (25 pts) Prove that if \(A \) has an eigenvalue \(\lambda \) then the matrix \(A^3+2A^2+A \) has an eigenvalue \(\lambda^3+2\lambda^2+\lambda \).

4. (25 pts) Multiple Choice

 a) The rank of a 3x3 non-zero matrix is greater than zero.
 ALWAYS/NEVER/SOMETIMES

 b) If \(B=\{b_1,b_2,b_3\} \) is a basis of \(\mathbb{R}^3 \) then \(\{Ab_1,Ab_2,Ab_3\} \) is a basis of \(\mathbb{R}^3 \).
 ALWAYS/NEVER/SOMETIMES

 c) A change of coordinates matrix is invertible: ALWAYS/NEVER/SOMETIMES

 d) Similar matrices have the same eigenvectors. ALWAYS/NEVER/SOMETIMES

 e) The matrix \(A \) is not diagonalizable. The product of the eigenvalues of \(A \) is equal to the determinant of \(A \). ALWAYS/NEVER/SOMETIMES