1. (25 pts) Let $A = \begin{pmatrix} 0 & 0 & 1 & 3 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix}$

 a) Compute $\det(A)$ by Gaussian Elimination.

 $A_1 = \begin{pmatrix} 0 & 0 & 1 & 3 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix}$

 $\text{swap}(3,2) \rightarrow A_2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix}$

 $\text{swap}(2,4) \rightarrow A_3 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 3 \end{pmatrix}$

 $\text{(iii)} \rightarrow \frac{1}{2} (\text{iv}) \rightarrow A_4 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}$

 As A_4 is triangular its determinant is the product of the diagonal elements, so $\det(A_4) = (1)(1)(2)(2) = 4$.

 The transformation which takes A_3 to A_4 is a replacement, so $\det(A_3) = \det(A_4) = 4$.

 The transformation which takes A_2 to A_3 is a swap, so $\det(A_2) = -\det(A_3) = -4$.

 The transformation which takes A_2 to A_3 is a swap, so $\det(A_1) = -\det(A_2) = 4$.

 So the determinant of A is 4.

 b) Compute $\det(A)$ by Cofactor expansion.

 We note that the first column of A is low density, so we expand on that column.

 $\det(A) = \sum a_{i,1}(-1)^{i+1} A_{i,1} = 0 + a_{2,1}(-1)^{2+1} A_{2,1} + 0 + 0$

 $= (1)(-1)^3\begin{vmatrix} 0 & 1 & 3 \\ 0 & 2 & 2 \\ 1 & 1 & 1 \end{vmatrix} = -4$

 We can compute the determinant of this minor by cofactor expansion, noting that the first column is again of low density. Calling this matrix B for convenience we get:

 $\det(B) = \begin{vmatrix} 0 & 1 & 3 \\ 0 & 2 & 2 \\ 1 & 1 & 1 \end{vmatrix} = ((1)(2) - (3)(2)) = -4$

 If $\det(B) = -4$, then $\det(A) = 4$.

Check: Compare the results of the two methods of computing \(\det(A) \).

2. (25 pts) If \(B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 4 & 3 \end{pmatrix} \)

a) Compute an LU decomposition (without pivoting) of \(B \)

First we compute both \(U \) by applying a sequence of elementary row operations to \(B \):

\[
\begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 4 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & -2 & -1 \\ 1 & 4 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & -2 & -1 \\ 0 & 2 & 2 \end{pmatrix} = B_2
\]

\[
\begin{pmatrix} 1 & 2 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & 1 \end{pmatrix} = U
\]

There are several ways to think about how we compute \(L \):

- Using the computational approach of Lay seen in Example 2, page 136, we note that the first column of \(L \) is the first column of \(B \) (below the diagonal) divided by the pivot element, i.e. \((1,2,1)/1 = (1,2,1) \). We compute the second column of \(B \) by looking at \(B_2 \), the place where we start clearing out the second column, and making the second column of \(L \) the second column of \(B_2 \) below the diagonal, divided by the second pivot, or \((0,-2,2)/(-2) = (0,1,-1) \). The third column is easily computed as the only element below the diagonal in that column is the pivot itself. Thus the third column of \(L \) is \((0,0,1)/1 = (0,0,1) \). Thus

\[
L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}
\]

- Alternatively, we may note that as we compute \(U = E_3 E_2 E_1 B \) and require that \(B = LU = L(E_3 E_2 E_1 B) \), we see that \(I = L E_3 E_2 E_1 B \), or \(L = E_1^{-1} E_2^{-1} E_3^{-1} \).

Here \(E_i \) is the replacement of row \((ii) \) by row \((ii) \) minus 2 times row \((i) \) minus 2 times row \((i) \), and so on. Thus we compute \(L \) by applying the reverse sequence of inverse elementary operations to the identity matrix \(I \):

\[
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}
\]

Check: Check by multiplying \(LU \) and confirming that \(LU = B \).

b) Solve \(Bx = \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix} \) for the vector \(x \) using the LU decomposition of \(B \).
We solve the equation \(Bx = (LU)x = b \) in two steps, first letting \(y = Ux \) and solving \(Ly = b \) to recover \(y \), and then solving \(Ux = y \) to recover the value of \(x \).

\[
Ly = \begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & -1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
\end{pmatrix} = \begin{pmatrix}
1 \\
-1 \\
5 \\
\end{pmatrix} = b
\]

We solve this by back-solving, starting with the equation from the first row that:

\[y_1 = 1\]

The second row gives us the equation:

\[2y_1 + y_2 = -1 \text{ or } y_2 = -1 - 2y_1 = -1 - 2(1) = -3\]

The third row gives us the equation:

\[y_1 + (-1)y_2 + y_3 = 5 \text{ or } y_3 = 5 - y_1 - (-1)y_2 = 5 - (1) - (-1)(-3) = 1\]

Thus \(y = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} \), which can be checked by multiplying and confirming that \(Ly = b \).

\[Ux = \begin{pmatrix}
1 & 2 & 1 \\
0 & -2 & -1 \\
0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{pmatrix} = \begin{pmatrix}
1 \\
-3 \\
1 \\
\end{pmatrix} = y
\]

We solve this by back-solving, starting with the equation from the last row:

\[x_3 = 1\]

The second row gives us the equation:

\[(-2)x_2 + (-1)x_3 = -3 \text{ or } (-2)x_2 = -3 - (-1)x_3\]

so \(x_2 = (-3 - (-1)x_3)/(-2) = (-3 - (-1)(1))/(-2) = 1 \)

The first row gives us the equation:

\[x_1 + (2)x_2 + x_3 = 1 \text{ or } x_1 = 1 - (2)x_2 - x_3 = 1 - (2)(1) - (1) = -2\]

Thus \(x = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \), which can be checked by multiplying and confirming that \(Ux = y \).

Check: We finally check by multiplying and confirming that \(Bx = b \)

3. (25 pts) Compute the inverse of \(A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \) by Gaussian Elimination.

We compute the inverse by bringing the augmented matrix \((A | I)\) to reduced row echelon form:

\[
(A | I) = \begin{pmatrix}
1 & 2 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 \\
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & -2 & -1 & -2 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 \\
\end{pmatrix}
\]
Thus \(A^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 2 \end{pmatrix} \)

Check: Multiply and confirm that \(AA^{-1} = I \).
Note that at any step of the computation \((C \mid D)\) we may confirm the computation to that point by confirming that \(DA = C\).

4. (25 pts) Multiple Choice (5 pts/correct answer, -2 pts/incorrect answer)

a) If \(E \) is an elementary matrix then \(\text{det}(E) = 1 \): ALWAYS/NEVER/SOMETIMES

Answer: SOMETIMES - Of the three types of elementary matrices, a swap matrix has \(\text{det}(E) = -1 \), a replacement matrix has \(\text{det}(E) = 1 \) and a scale by \(\lambda \) has a determinant of \(\lambda \).

b) If \(A \) is invertible and the constant \(c \) is not 0 then \(cA \) is invertible: ALWAYS/NEVER/SOMETIMES

Answer: ALWAYS - If \(A \) is invertible it has an inverse \(A^{-1} \). The inverse of \((cA) \) is the matrix \((c^{-1}A^{-1}) \).

c) If \(AB = I \) then \(BA = I \): ALWAYS/NEVER/SOMETIMES

Answer: SOMETIMES - This is true if \(A \) and \(B \) are square but not necessarily true otherwise. Consider the case (partly from homework) of the matrices:

\[
A = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} & 0 \\ \frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{pmatrix}
\]

where we see that
\[AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ but } BA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix} \]

d) If the linear transformation \(T \) is invertible then \(T \) is onto.

Answer: ALWAYS - If \(T \) is invertible there must be some linear transformation \(S \) such that \(S(T(x)) = x \) and \(T(S(y)) = y \). Recall that \(T \) is onto if for any \(y \) there must be some \(x \) such that \(T(x) = y \). Given any \(y \) the value \(x = S(y) \) will satisfy this requirement. Thus \(T \) must be onto.

e) If \(\det(A) = d \) then \(\det(-A) = d \). ALWAYS/NEVER/SOMETIMES

Answer: SOMETIMES - If the dimensions of \(A \) are even then \(\det(-A) = \det(A) \). If the dimensions of \(A \) are odd then \(\det(-A) = -\det(A) \). We see this by converting \(A \) to \(-A\) by scaling one row at a time by multiplying by a scaling factor of \((-1)\). At each step this multiplies the determinant by a factor of \((-1)\). Thus the determinant is unchanged if there are an even number of steps, in other words if \(A \) has an even dimension.